

Technologica

 Vol.5(1): Hal 165-184 (Januari 2026)
ISSN: 2827-9492

(Online)

Technologica 165

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge

Computing Berbasis TinyML

Unsupervised Autoencoder for Intelligent Anomaly Detection on TinyML-Based Edge

Computing Devices

Noviardi*,1, Rosda Syelly2

1,2Program Studi Teknik Komputer, STT Payakumbuh

*Penulis Korespondensi

Email: noviardi2179@gmail.com

Abstrak Penelitian ini membandingkan performa sistem monitoring lingkungan berbasis Edge

Computing menggunakan Autoencoder Unsupervised Neural Network (TinyML) dengan metode

Heuristic pada perangkat ESP32. Kebaruan penelitian ini terletak pada evaluasi komprehensif

yang menyandingkan akurasi deteksi anomali dengan efisiensi sumber daya fisik (termal dan

memori) yang belum banyak dibahas secara simultan dalam studi sebelumnya. Hasil analisis

menunjukkan bahwa model TinyML memiliki superioritas kinerja dengan capaian F1-Score

sempurna (1,0), melampaui sistem Heuristic yang gagal memvalidasi data transisi. Dari sisi

operasional, TinyML menunjukkan efisiensi tinggi dengan stabilitas suhu kerja yang terjaga dan

latensi pengiriman data 24% lebih cepat. Meskipun terdapat penggunaan memori tambahan untuk

model, manajemen RAM terbukti tetap bersifat deterministik. Penelitian ini membuktikan bahwa

implementasi Unsupervised Learning di tingkat edge menghasilkan sistem deteksi yang lebih

cerdas dan responsif tanpa membebani kinerja fisik perangkat

Kata Kunci: TinyML, Autoencoder, Unsupervised Learning, Heuristic, Edge Computing,

ESP32.

Abstract. This study compares the performance of an environmental monitoring system based on

Edge Computing using an Autoencoder Unsupervised Neural Network (TinyML) against a

Heuristic method on an ESP32 device. The novelty of this research lies in a comprehensive

evaluation that simultaneously benchmarks anomaly detection accuracy against physical resource

efficiency (thermal and memory)—an aspect rarely addressed in prior studies. Analysis results

demonstrate that the TinyML model exhibits superior performance, achieving a perfect F1-Score

(1.0) and outperforming the Heuristic system, which failed to validly detect transitional data.

Operationally, TinyML demonstrates high efficiency, maintaining stable operating temperatures

and achieving a 24% reduction in data transmission latency. Despite the additional memory

overhead required for the model, RAM management proves to remain deterministic. This research

confirms that implementing Unsupervised Learning at the edge results in a more intelligent and

responsive detection system without compromising the device's physical performance.

Keywords: TinyML, Autoencoder, Unsupervised Learning, Heuristic, Edge Computing, ESP32

1. Pendahuluan

Dalam ekosistem Industri 4.0, pemantauan lingkungan secara real-time merupakan pilar

utama bagi pemeliharaan prediktif dan kontrol kualitas. Penggunaan sensor berbiaya rendah

seperti DHT11 yang terintegrasi dengan mikrokontroler ESP32 memungkinkan digitalisasi data

https://journals.gesociety.org/index.php/technologica

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 166

suhu dan kelembaban langsung di tingkat edge. Implementasi ini secara signifikan meningkatkan

daya tanggap sistem serta mengurangi latensi jika dibandingkan dengan solusi berbasis cloud

tradisional (Barambones & Apiñaniz, 2022). Namun ketergantungan pada infrastruktur cloud yang

masif seringkali memicu kendala berupa konsumsi bandwidth yang tidak efisien dan risiko

keamanan data.(Laroui et al., 2021)

Untuk mengatasi kendala infrastruktur terpusat, paradigma Edge Computing diadopsi guna

memproses dan menganalisis data secara lokal. Pendekatan ini meminimalkan kebutuhan

komunikasi cloud dan mengoptimalkan penggunaan sumber daya perangkat, yang pada gilirannya

mendukung skalabilitas arsitektur industri (Magadán F J et al., 2023), (Danladi & Baykara, 2022).

Lebih lanjut, implementasi kecerdasan buatan pada perangkat terbatas sumber daya, atau Tiny

Machine Learning (TinyML), memfasilitasi pengambilan keputusan independen di tingkat edge

(Alajlan & Ibrahim, 2022). TinyML mengatasi keterbatasan komputasi tepi tradisional melalui

teknik seperti kuantisasi, yang mengoptimalkan ukuran model agar sesuai dengan kapasitas RAM

mikrokontroler sekaligus menjaga privasi data (Immonen, 2022).

Autoencoder (AE) telah diidentifikasi sebagai instrumen yang kuat untuk deteksi anomali

tanpa pengawasan (unsupervised). Prinsip kerja model ini adalah memetakan input ke ruang laten

berdimensi rendah dan kemudian merekonstruksinya kembali ke bentuk asli. Dalam proses ini,

kesalahan rekonstruksi atau Mean Squared Error (MSE) berfungsi sebagai metrik utama; nilai

kesalahan yang tinggi mengindikasikan adanya penyimpangan pola atau anomali (Bouman &

Heskes, 2024), (Chikezie et al., 2025).

Berbagai penelitian terdahulu telah mengeksplorasi efektivitas arsitektur ini pada data sensor

(Merrill, 2020) menunjukkan bahwa AE mampu mengekstraksi fitur kompleks pada data yang

berfluktuasi. Pengembangan lebih lanjut melibatkan penggunaan Variational Autoencoders

(VAE) untuk menangkap ketidakpastian data secara lebih dinamis. Selain itu, teknik regularisasi

pada ruang laten mulai diterapkan untuk mencegah model mempelajari pola anomali, yang krusial

untuk menjaga akurasi deteksi di perangkat edge (Choi et al., 2023). Studi lain menegaskan bahwa

optimasi neural network pada mikrokontroler komoditas dapat mencapai performa tinggi dengan

beban komputasi yang tetap efisien (Sudharsan et al., 2021).

Meskipun metode deteksi telah berkembang, terdapat kesenjangan teknis antara metode

heuristik tradisional dan pendekatan berbasis kecerdasan buatan. Metode heuristik berbasis

ambang batas statis (threshold) sering kali gagal mendeteksi anomali kontekstual yang halus—

situasi di mana nilai data masih berada dalam rentang normal tetapi polanya menunjukkan

ketidakteraturan yang mencurigakan (Danladi & Baykara, 2022) Sebaliknya, adopsi TinyML

menawarkan akurasi berbasis pola yang lebih tinggi namun sering dianggap memiliki beban

memori yang terlalu berat bagi perangkat mikrokontroler (Immonen, 2022).

Literatur saat ini banyak berfokus pada pengembangan model ML secara terpisah, namun

masih sangat sedikit yang memberikan perbandingan sistematis (head-to-head) mengenai biaya

sumber daya (resource cost) antara logika heuristik dan TinyML pada perangkat ESP32 (Soro,

2020). Selain itu, minimnya penelitian yang membahas deteksi anomali pada data sensor DHT11

yang sangat fluktuatif menjadi celah kritis yang perlu diisi. Belum ditemukan formula yang secara

sistematis membandingkan rasio peningkatan akurasi terhadap penggunaan memori pada

perangkat dengan keterbatasan sumber daya.

 Penelitian ini hadir untuk mengisi kesenjangan tersebut dengan mengusulkan implementasi

model Autoencoder berbasis TinyML yang dioptimalkan melalui teknik kuantisasi. Model ini

Noviardi dan Syely. R

Technologica 167

dirancang untuk mempelajari pola distribusi data normal secara mandiri dan dikonversi ke format

TensorFlow Lite for Microcontrollers agar kompatibel dengan memori ESP32 yang terbatas. Hal

ini memungkinkan evaluasi langsung terhadap efektivitas model AI dibandingkan metode

konvensional dalam skenario industri nyata. Tujuan utama penelitian ini adalah melakukan

kuantifikasi secara empiris terhadap efektivitas dan efisiensi sumber daya antara pendekatan

heuristik dan TinyML. Kontribusi utama dari penelitian ini adalah penyediaan kerangka kerja

benchmarking komprehensif yang membuktikan bahwa TinyML merupakan solusi berkelanjutan

untuk menghadirkan kecerdasan tinggi pada mikrokontroler tanpa mengorbankan stabilitas fisik

perangkat. Sebagai pembeda utama dari studi terdahulu, penelitian ini secara spesifik mengisi

celah literatur (research gap) melalui analisis komparatif langsung antara validitas metode

heuristik (aturan baku) dan adaptabilitas TinyML yang dieksekusi sepenuhnya pada arsitektur

perangkat keras ESP32

2. Metode

Penelitian ini menerapkan metodologi eksperimental dengan mengintegrasikan arsitektur

Autoencoder (AE) sebagai model TinyML berbasis unsupervised neural network yang dijalankan

sepenuhnya pada lingkungan Edge Computing (Alajlan & Ibrahim, 2022). Pemilihan pendekatan

TinyML ini didorong oleh kebutuhan akan sistem deteksi anomali yang efisien pada

mikrokontroler ESP32 dengan sumber daya terbatas tanpa ketergantungan pada dataset berlabel

yang besar (Immonen, 2022) Sebaliknya, logika heuristik berbasis ambang batas statis digunakan

sebagai baseline Non-TinyML untuk mengevaluasi efektivitas relatif terhadap sistem IoT

konvensional (Magadán F J et al., 2023).

Proses penelitian dimulai dengan pengambilan data suhu dan kelembaban dari sensor

DHT11, diikuti dengan pelatihan model AE secara offline untuk mempelajari pola distribusi data

normal. Untuk memastikan model TinyML dapat berjalan secara efisien pada perangkat dengan

RAM terbatas, diterapkan teknik kuantisasi yang memetakan nilai floating-point ke format presisi

lebih rendah sebelum dikonversi ke format TensorFlow Lite for Microcontrollers. Penggunaan

paradigma Edge Computing dalam eksperimen ini memungkinkan proses identifikasi anomali

dilakukan secara real-time, mandiri, dan responsif tanpa ketergantungan pada konektivitas cloud.

Melalui perbandingan head-to-head ini, penelitian bertujuan mengukur secara empiris

peningkatan akurasi deteksi pola pada sistem TinyML dibandingkan dengan keterbatasan logika

kaku pada sistem Non-TinyML. Dibawah ini dapat dilihat diagram alir Penelitian:

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 168

Gambar 1. Diagram alir Tahapan Penelitian

Tahap I: Implementasi Baseline (Heuristic)

Penelitian dimulai dengan inisialisasi sistem untuk menjalankan siklus monitoring awal.

Menggunakan ESP32, dimana ESP32 melakukan akuisisi data fisik melalui sensor DHT11. Dalam

ekosistem Industri 4.0, pemantauan lingkungan secara real-time merupakan pilar utama bagi

pemeliharaan prediktif dan kontrol kualitas. Pemilihan sensor DHT11 dalam penelitian ini

didasarkan pada karakteristiknya yang menawarkan keseimbangan optimal antara efisiensi biaya

dan kemudahan integrasi, menjadikannya representasi ideal untuk skenario penyebaran node

sensor massal (massive deployment) pada industri dengan anggaran terbatas. Data tersebut

kemudian diproses menggunakan logika heuristik melalui titik keputusan (decision point) untuk

mengevaluasi apakah nilai suhu (T) atau kelembaban (H) melewati ambang batas statis

(Threshold) yang ditentukan. Hasil pembacaan dan status awal ini kemudian dikirimkan ke cloud

platform ThingSpeak sebagai dataset pembanding.

Tahap II: Pengembangan Model dan Kuantisasi

Dataset yang telah terkumpul di unduh untuk melalui proses pelatihan (training)

menggunakan arsitektur Autoencoder di lingkungan Google Colab. Proses ini melibatkan

optimalisasi model agar sesuai dengan spesifikasi Edge Computing melalui teknik kuantisasi.

Setelah model mencapai performa optimal, dilakukan transformasi format menjadi file header (.h)

agar dapat ditanamkan ke dalam memori mikrokontroler ESP32.

Tahap III: Implementasi TinyML dan Inferensi Edge

Pada tahap ini, model yang telah dikonversi dimuat ke dalam perangkat untuk memulai

proses Inference. Berbeda dengan tahap pertama, sistem kini bekerja dengan menghitung nilai

Noviardi dan Syely. R

Technologica 169

Reconstruction Error (RE) yang didefinisikan melalui rumus Mean Squared Error (MSE)

(Bouman & Heskes, 2024)(Chikezie et al., 2025):

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − 𝑥′𝑖)2𝑛

𝑖=1 …………………………………………………………(1)

Di mana 𝑥 adalah data input sensor dan 𝑥′ adalah data hasil rekonstruksi model. Keputusan

mengenai status anomali ditentukan melalui perbandingan antara nilai Reconstruction Error

dengan ambang batas dinamis yang telah dipelajari model. Hasil analisis yang mencakup enam

field data kemudian dikirimkan kembali ke ThingSpeak.

Tahap IV: Analisis Statistik dan Validasi Akhir

Tahap akhir melibatkan penarikan seluruh dataset untuk dilakukan evaluasi mendalam.

Selain menggunakan Confusion Matrix untuk menghitung akurasi, dilakukan pula uji Mann-

Whitney U untuk menganalisis perbedaan penggunaan sumber daya (RAM) (Dhyani & Butola,

2025). Rumus uji statistik yang digunakan adalah:

𝑈 = 𝑛1𝑛2 +
𝑛1(𝑛𝑖+1)

2
− 𝑅1 …………………………………….………………… (2)

Di mana n adalah jumlah sampel dan R adalah jumlah peringkat. Tahap validasi akhir

menentukan apakah solusi TinyML memberikan performa yang lebih baik berdasarkan metrik F1-

Score. Jika hasil evaluasi belum memenuhi kriteria, maka alur penelitian akan kembali ke Tahap

II untuk dilakukan penyesuaian parameter pelatihan.

Tahap V: Analisis Statistik, Termal, dan Validasi Akhir

Tahap akhir melibatkan penarikan seluruh dataset dari cloud untuk dilakukan evaluasi

komprehensif melalui tiga parameter utama:

1. Analisis Self-Heating dan Distribusi Termal:

Untuk mengevaluasi dampak beban kerja komputasi Edge Computing terhadap suhu

internal perangkat, dilakukan analisis distribusi suhu menggunakan metode Kernel Density

Estimation (KDE). Hal ini bertujuan untuk memantau fenomena self-heating pada ESP32

saat menjalankan proses Inference yang intensif. Secara matematis, stabilitas suhu

dievaluasi dengan membandingkan varians (σ2) distribusi suhu antara sistem baseline dan

TinyML untuk memastikan perangkat bekerja dalam batas suhu operasional yang aman.

2. Analisis Latency dan Throughput:

Efisiensi waktu respon sistem diukur melalui durasi pengiriman data end-to-end. Latensi

dihitung berdasarkan selisih waktu antara stempel waktu (timestamp) pengumpulan data

sensor hingga data berhasil diterima oleh gateway (Behnke & Austad, 2024). Throughput

sistem dievaluasi untuk memastikan bahwa durasi Inference (rata-rata 16 ms) tidak

menyebabkan penundaan (delay) pada interval pengiriman data, sebuah pendekatan yang

krusial dalam menjaga efisiensi komputasi edge (Ficili et al., 2025). Hal ini dilakukan

untuk menjamin kapabilitas real-time sistem deteksi saat data ditransmisikan ke platform

ThingSpeak.

3. Analisis Respon Deteksi Intelligence:

Validasi kecerdasan model dilakukan dengan mengamati respon sistem terhadap

perubahan data sensor secara dinamis (fluktuasi suhu ekstrim). Performa deteksi diukur

menggunakan metrik Confusion Matrix untuk menghasilkan nilai Precision, Recall, dan

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 170

F1-Score. Kemampuan model dalam merespon perubahan data dievaluasi melalui nilai

Reconstruction Error (RE); model dianggap cerdas jika mampu menghasilkan lonjakan

nilai (RE) yang signifikan secara instan saat terjadi deviasi pola data (anomali)(Dhyani &

Butola, 2025) , yang kemudian divalidasi dengan rumus:

𝐹1 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
…………………………………………………..(3)

Tahap validasi akhir menentukan apakah solusi TinyML memberikan performa yang lebih

baik berdasarkan seluruh parameter di atas. Jika hasil evaluasi menunjukkan ketidakstabilan suhu

(overheating) atau kegagalan respon deteksi, maka alur penelitian akan kembali ke Tahap II untuk

optimasi model lebih lanjut.

3. Hasil dan Pembahasan

Bagian ini memaparkan bukti empiris bahwa implementasi TinyML Autoencoder pada

ESP32 menawarkan superioritas dalam sensitivitas deteksi anomali dibandingkan logika heuristik,

dengan tetap mempertahankan efisiensi sumber daya yang kritis. Hasil pengujian menunjukkan

stabilitas yang konsisten pada konsumsi memori dan profil termal, serta memastikan bahwa

integrasi kecerdasan buatan tidak mengganggu latensi transmisi data secara real-time. Temuan ini

diperkuat melalui validasi statistik yang mengonfirmasi keandalan sistem dalam skenario

operasional dengan keterbatasan daya.

3.1 Hasil dan Analisis Kinerja Sistem Baseline/Heuristic

Rangkaian yang diterapkan pada penelitian ini dirancang menggunakan aplikasi online

https://www.circuito.io dengan hasil seperti gambar dibawah ini:

Gambar 2. Rancangan Rangkaian ESP32 dan sensor DHT11 dan Penerapannya

Board ESP32 di integrasikan dengan Cloud IoT Platform Thingspeak, dengan Chanel ID :

3194325, dan API Key : 6GU8IGJJRWSYM2IU. Data real time diambil berdasarkan suhu dan

kelembaban normal Kota Payakumbuh, dengan rentang 18°C atau di atas 34°C, dan sengaja

rentang pada Heuristic baseline dterapkan 12°C atau di atas 35°C, mengingat jika terjadi lonjakan

atau penurunan suhu drastic, sedangkan untuk kelembaban diambil rentang 30% - 95%

Sedangkan untuk penerapan model TinyML pada Autoencoder yang neparkan Unsupervised

Neural Network diImplementasi metode Min-Max Scaling pada sistem TinyML ini menggunakan

dua array referensi, yaitu minv dan maxv, untuk menormalisasi variabel masukan ke dalam rentang

https://www.circuito.io/

Noviardi dan Syely. R

Technologica 171

yang seragam. Berdasarkan nilai yang ditetapkan, proses penyekalaan dilakukan secara spesifik

pada tiap indeks: indeks ke-0 mengatur parameter suhu dalam rentang 15.0 hingga 50.0, indeks

ke-1 memetakan kelembapan antara 20.0 hingga 90.0, sedangkan indeks ke-2 mencakup nilai 0.0

hingga 300.0 yang kemungkinan merepresentasikan durasi proses atau metrik sensor lainnya.

Selanjutnya, indeks ke-3 menangani nilai magnitudo besar antara 80000.0 hingga 200000.0 yang

merepresentasikan penggunaan memori (Free Heap), dan indeks ke-4 berfungsi sebagai

penskalaan status biner atau variabel indikator dalam rentang 0.0 hingga 1.0.

Pada penelitian ini berikan perlakuan suhu dengan sengaja dinaikkan menggunakan pemanas

yang didekatkan dengan sensor DHT11 dan turunkan dengan menggunakan pendingin freezer,

untuk mendeteksi sesitifitas kinerja borad ESP32. Dibawah ini dapat dilihat hasil Tampilan kinerja

ESP32 Non TinyML dan ESP32 dengan TinyML pada private view thingspeak.

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 172

Gambar 3. Hasil data ESP32 Heuristic (Non TinyML) dan ESP32 dengan model Autoencoder

(TinyML) pada Cloud IoT Platform Thingspeaks

Data yang dikumpulkan melalui platform ThingSpeak diekstraksi dalam format Comma-

Separated Values (CSV) untuk diproses lebih lanjut. Tahap pengolahan dan analisis data dilakukan

menggunakan lingkungan Google Colab, yang kemudian menghasilkan visualisasi perbandingan

kinerja sebagaimana disajikan pada grafik dibawah ini :

Gambar 4. Sistem deteksi baseline Heuristic (Non TinyML)

Gambar 5. Hasil deteksi dengan model Autoencoder (TinyML)

Noviardi dan Syely. R

Technologica 173

Analisis komparatif antara data dari Grafik pada Gambar 3.2 dan 3.3 menunjukkan

perbedaan fundamental dalam mekanisme deteksi anomali antara sistem berbasis ambang batas

konvensional dengan sistem berbasis kecerdasan buatan di tingkat edge. Pada grafik Non-TinyML,

sistem beroperasi secara normal dengan nilai status yang konstan di angka 0, karena fluktuasi suhu

stabil di kisaran 24.8°C dan tidak mampu mengenali penyimpangan situasional selama data belum

melampaui ambang batas statis 35°C. Sebaliknya, grafik TinyML menunjukkan kapabilitas

deteksi yang lebih responsif dan cerdas, di mana variabel field6 secara dinamis berubah menjadi

angka 1 (anomali) saat model jaringan saraf tiruan mendeteksi pola suhu yang tidak wajar, seperti

pada lonjakan hingga 27.7°C. Sementara metode statistik seperti Z-Score pada sistem

konvensional memerlukan pemrosesan batch pasca-data dikumpulkan untuk mengidentifikasi

outlier, sistem TinyML pada perangkat ESP32 mampu melakukan inferensi secara real-time untuk

mengenali anomali berdasarkan konteks pola yang telah dipelajari, bukan sekadar berdasarkan

batasan angka numerik semata. Tabel. 1 dibawah ini dapat menjelaskan perbedaan kenirja anatara

dua perlakuan diatas.

Tabel 1. Perbandingan Sistem Heuristic vs Autoencoder (Non TinyML dengan TinyML)

Kriteria

Perbandingan
Sistem Non-TinyML (Banding) Sistem TinyML (Inferensi Edge)

Metode Deteksi Ambang Batas Statis (Hardcoded

Threshold)

Model Jaringan Saraf Tiruan

(Neural Network)

Logika Operasional if (suhu > 35.0) Pengenalan Pola (Pattern

Recognition)

Status Field 6 Konstan 0 (Selalu dianggap

normal)

Dinamis 0 atau 1 (Deteksi cerdas)

Rentang Suhu

Terukur

Sangat stabil (~24.7°C - 24.9°C) Lebih variatif (~24.7°C - 27.7°C)

Respons terhadap

Pola

Mengabaikan lonjakan selama di

bawah 35°C

Menandai suhu 27°C sebagai

anomali situasional

Ketergantungan

Cloud

Tinggi (Analisis statistik

dilakukan di luar)

Rendah (Keputusan diambil

langsung di ESP32)

Akurasi

Kontekstual

Rendah (Hanya melihat angka

mutlak)

Tinggi (Melihat perilaku data

terhadap waktu)

Deteksi Z-Score Memerlukan data historis (Batch) Berjalan secara Real-time (Per poin

data)

3.2 Perbandingan Efisiensi Memori

Analisis ketersediaan memori dinamis (Free Heap) menunjukkan perbedaan alokasi sumber

daya yang signifikan namun konsisten antara kedua sistem. Pada sistem Non-TinyML, rata-rata

memori bebas berada di angka 237.221 Bytes. Angka ini mencerminkan beban kerja minimal

karena perangkat hanya melakukan pembacaan sensor dan pengiriman data tanpa proses

komputasi berat. Sementara itu pada Gambar 6, pada sistem TinyML, rata-rata memori bebas

menurun menjadi 213.862 Bytes. Selisih penggunaan memori sebesar kurang lebih 23.358 Bytes

(sekitar 23 KB) ini merupakan "investasi" memori yang digunakan untuk memuat arsitektur model

Neural Network (bobot dan bias) serta menyediakan tensor arena untuk proses inferensi.

Meskipun kapasitas RAM yang tersisa lebih sedikit, distribusi memori pada sistem TinyML tetap

terjaga dalam rentang yang stabil (min: 211.100 B, max: 216.240 B). Hal ini mengindikasikan

bahwa model telah teroptimasi dengan baik untuk berjalan di atas perangkat ESP32 tanpa

menyebabkan risiko memory overflow. Data ini membuktikan bahwa implementasi TinyML di

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 174

perangkat ESP32 hanya membutuhkan pengorbanan sekitar 10% dari total RAM yang tersedia

untuk memberikan kemampuan deteksi anomali yang cerdas. Rasio ini tergolong sangat efisien

untuk sistem embedded.

Gambar 6. Perbandingan Rata Rata Free RAM Heuristic vs Autoencoder Non TinyML

Gambar 7. Hasil perbandingan distribusi memori terhadap free RAM Heuristic vs Autoencoder

(Non TinyML dengan TinyML)

Bukti keandalan sistem dalam jangka panjang juga terlihat pada grafik Time Series Gambar

8. Kedua sistem menunjukkan garis tren horizontal yang stabil sepanjang lebih dari 4.000 sampel

indeks. Tidak adanya tren penurunan memori secara bertahap (step-down) membuktikan bahwa

sistem bebas dari kebocoran memori (memory leakage). Stabilitas ini sangat krusial bagi aplikasi

IoT industri yang menuntut uptime tinggi tanpa perlu reboot akibat fragmentasi memori.

Gambar 8. Perbandingan Stabilitas memory (time series) Heuristic vs Autoencoder (Non

TinyML dengan TinyML)

Noviardi dan Syely. R

Technologica 175

Untuk memvalidasi perbedaan antara Non TinyML dengan TinyML ini, dilakukan pengujian

Mann-Whitney U yang menghasilkan nilai p < 0,001, dari analisa formula dibawah ini:

Tabel 2. Data nilai free RAM Non TinyML dan TinyML

Sampel Non-TinyML (n1) TinyML (n2)

1-10 237220, 237225, 237218, 237230,

237215, 237222, 237228, 237219,

237224, 237221

213860, 213865, 213858, 213870,

213855, 213862, 213868, 213859,

213864, 213861

a. Jumlah rank (R)

R1 (Non TinyML = 11+12+13+14+15+16+17+18+19+20 = 155

R2 (TinyML) = 1+2+3+4+5+6+7+8+9+10 = 55

b. Menghitung U dengan rumus (2)

𝑈 = 𝑛1𝑛2 +
𝑛1(𝑛𝑖 + 1)

2
− 𝑅1

𝑈 = (10)(10) +
10(11)

2
− 155

𝑈 = 100 + 55 − 155 = 0

c. Menghitung Z-Score: Untuk sampel n > 8, kita menggunakan pendekatan distribusi

normal.𝑚𝑈 =
𝑛1𝑛2

2
=

100

2
= 50

d. Standar deviasi (σU)𝜎𝑈 = √𝑛1𝑛2(𝑛1+𝑛2+1)

12
= √

100(21)

12
= √175 ≈ 13,23

e. Maka Z-Score (Z)= =
𝑈−𝑚𝑈

𝜎𝑈
=

0−50

13,23
≈ −3,78

Hasil pengujian menunjukkan nilai U = 0 dengan Z = -3,78, yang menghasilkan nilai

signifikansi p < 0,001. Statistik ini mengonfirmasi bahwa penambahan model Autoencoder

memberikan beban memori yang berbeda nyata dibandingkan sistem heuristik, namun tetap berada

dalam batas toleransi aman.

Rangkuman lengkap perbandingan kinerja memori, parameter statistik, dan efisiensi sumber

daya antara kedua metode disajikan dalam Tabel 3 berikut:

Tabel 3. Analisis komparatif efisiensi Memory Heuristic vs Autoencoder (Non TinyML

dengan TinyML)

Parameter

Evaluasi

Sistem Non-

TinyML

(Heuristic)

Sistem TinyML

(Autoencoder)

Selisih /

Overhead

Keterangan /

Interpretasi

Rata-rata Free

RAM

237.221 Bytes 213.863 Bytes 23.358

Bytes

Signifikan secara

statistik ($p <

0,001$)

Rentang

Memori (Min -

Max)

236.820 -

239.344 B

211.100 -

216.240 B

- Distribusi stabil

pada kedua sistem

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 176

Konsumsi

Model

(Estimasi)

0 KB (Firmware

Dasar)

~23 KB (Model +

Engine)

+23 KB Alokasi untuk

Tensor Arena

Overhead RAM

(%)

0% (Baseline) 9,84% 9,84% Rasio efisien untuk

ESP32

Stabilitas Stack 25 Bytes 25 Bytes 0 Sangat Stabil

(Identik)

Indikasi

Memory Leak

Tidak Ada Tidak Ada - Garis tren linear

(horizontal)

3.3 Karakteristik Operasional Edge Computing (iNference TinyML)

Pada tahap ini didiskusikan tentang temuan dari hasil penelitian ini yaitu kondisi pada

perilaku fisik dan kecepatan perangkat saat menjalankan tugas kecerdasan buatan secara local.

Selain itu juga membahas stabilitas suhu operasional ESP32. Meskipun melakukan komputasi

berat, distribusi suhu tetap terpusat pada angka efisien (24,73°C) juga dideskripsikan Latency dan

Throughput data guna mengevaluasi interval pengiriman data ke ThingSpeak, untuk membuktikan

bahwa pemrosesan lokal (Edge Computing) justru menghasilkan transmisi yang lebih stabil dan

cepat.

1. Analisis Self-Heating (Efisiensi Termal)

Dari data yang diperoleh ditemukan bahwa karakteristik fisik perangkat menunjukkan

efisiensi termal yang luar biasa melalui pengamatan fenomena Self-Heating selama proses

komputasi berlangsung. Meskipun ESP32 memikul beban kerja yang lebih berat untuk

mengeksekusi algoritma Neural Network secara kontinu, stabilitas suhu operasional perangkat

tetap terjaga dengan sangat baik. Data menunjukkan bahwa distribusi suhu kerja tetap terpusat

secara konsisten pada angka efisien, yakni 24,73°C, tanpa adanya lonjakan panas yang signifikan

(thermal spiking). Hal ini membuktikan bahwa optimasi model TinyML pada tingkat edge tidak

hanya efisien secara perangkat lunak, tetapi juga secara fisik; penggunaan instruksi aritmatika

yang teroptimasi mampu meminimalkan disipasi daya pada inti prosesor. Stabilitas termal pada

suhu rendah ini sangat menguntungkan bagi reliabilitas jangka panjang perangkat IoT, karena

mengurangi risiko degradasi komponen akibat stres panas, sehingga menjamin akurasi sensor suhu

lingkungan tetap objektif tanpa terpengaruh oleh panas internal dari aktivitas central processing

unit (CPU). Dibawah ini dapat dilihat pada grafik dibawah ini

Gambar 9. Grafik Self Heating Heuristic vs Autoencoder (Non TinyML dengan TinyML)

Noviardi dan Syely. R

Technologica 177

Untuk lebih jelasnya temuan diatas dapat dilihat pada Tabel 5. Hasil Perbandingan Self

Heating Non TinyML dan TinyML

Tabel 4. Hasil Perbandingan Self Heating Heuristic vs Autoencoder (Non TinyML dengan

TinyML)

Parameter

Termal

Sistem Non-

TinyML (Banding)

Sistem TinyML

(Edge AI)

Analisis Dampak

Suhu Operasional

Rata-rata

± 24,81°C ± 24,73°C TinyML menunjukkan

efisiensi termal yang lebih

baik (lebih dingin).

Stabilitas

Distribusi Suhu

Fluktuatif (Rentang

Luas)

Sangat Stabil

(Terpusat)

Distribusi suhu TinyML

sangat konsisten pada satu

titik.

Beban Kerja

Prosesor

Rendah (Hanya

Kirim Data)

Tinggi (Inferensi

Model AI)

Meskipun beban komputasi

naik, suhu tidak ikut naik

secara linear.

Gejala Panas

Berlebih

Tidak Ada Tidak Ada Optimasi TinyML berhasil

menekan disipasi daya pada

chip.

Integritas Sensor Sangat Baik Sangat Baik Panas internal tidak

mengintervensi pembacaan

sensor eksternal.

Kondisi Termal

Perangkat

Dingin / Idle Dingin / Efisien Penggunaan instruksi

teroptimasi menjaga suhu

tetap rendah.

Data ini membuktikan hipotesis bahwa Edge Computing tidak berarti menguras energi

secara berlebihan atau merusak perangkat. Dengan suhu yang tetap dingin (24,7°C), sistem ini

sudah siap untuk dipasang secara permanen (long-term deployment) Analisis Latency dan

Throughput.

2. Analisis terhadap parameter Latensi dan Throughput

Selanjutnya parameter Latensi dan Throughput yang diperoleh dari penelitian ini

menunjukkan keunggulan performansi yang signifikan pada arsitektur Edge Computing (TinyML)

dibandingkan dengan sistem monitoring konvensional. Berdasarkan tren temporal, sistem TinyML

menunjukkan konsistensi interval pengiriman data yang lebih rapat dan stabil, dengan rata-rata

latensi berada di kisaran 16 detik. Hal ini dimungkinkan karena proses inferensi dilakukan secara

lokal pada ESP32, sehingga perangkat dapat segera melakukan transmisi data ke ThingSpeak tepat

setelah keputusan diambil tanpa hambatan siklus tunggu yang panjang. Sebaliknya, sistem Non-

TinyML memperlihatkan latensi yang lebih tinggi dan fluktuatif dengan rata-rata 21 detik, yang

mengindikasikan ketidakstabilan Throughput akibat ketergantungan pada pemrosesan data

mentah. Secara distributif, grafik histogram mengonfirmasi bahwa TinyML memiliki kerapatan

data yang tinggi pada interval waktu yang sempit, sementara Non-TinyML tersebar lebih lebar.

Stabilitas latensi pada sistem TinyML ini sangat krusial dalam konteks deteksi dini anomali,

karena menjamin responsivitas sistem yang lebih cepat dan deterministik dalam melaporkan

kondisi kritis di lapangan. Untuk lebih jelasnya dapat dilihat dari Gambar dibawah ini

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 178

Gambar 10. Tren Latency (pengiriman data) per detik Heuristic vs Autoencoder (Non

TinyML dengan TinyML)

Gambar 11. Distribusi Latency (Kerapatan Throughput) Heuristic vs Autoencoder (Non

TinyML dengan TinyML)

Dibawah ini ditampilkan tabel perbandingan Latency dan throuhtpu antara Non TinyML

dan TinyML

Tabel 5. Perbandingan Latency dan throuhtput antara Heuristic vs Autoencoder (non

TinyML dengan TinyML)

Indikator

Performa

Non-TinyML

(Banding)

TinyML (Edge

Inference)

Interpretasi Teknis

Rata-rata

Latensi

± 21,0 Detik ± 16,0 Detik TinyML lebih cepat 23,8%

dalam transmisi.

Stabilitas (Std

Dev)

Tinggi (Lebih

Variatif)

Rendah (Lebih

Presisi)

Pengiriman data TinyML

lebih terjadwal.

Kerapatan

Throughput

Tersebar/Renggang Terpusat/Rapat Volume data per menit lebih

tinggi pada TinyML.

Efisiensi Waktu Pasif (Menunggu) Aktif (Real-time) Inferensi lokal

menghilangkan waktu tunggu

cloud.

Reliabilitas Moderat Sangat Tinggi Meminimalkan risiko data

hilang akibat latensi.

Dari tabel diatas dapat diasumsikan bahwa Integrasi TinyML tidak hanya meningkatkan

"kecerdasan" sensor, tetapi juga mengoptimalkan jalur komunikasi data. Dengan latensi yang lebih

Noviardi dan Syely. R

Technologica 179

rendah dan Throughput yang lebih stabil, sistem mampu memberikan peringatan bahaya (anomali)

ke platform ThingSpeak dengan jeda waktu yang minimal. Hal ini membuktikan bahwa beban

komputasi tambahan di tingkat edge tidak memperlambat kinerja, melainkan justru

mengefisiensikan siklus hidup data secara keseluruhan

3.4 Validasi Inteligensi dan Akurasi

Tahap validasi akhir ini membuktikan bahwa arsitektur Edge Computing berbasis TinyML

memiliki kecerdasan situasional yang jauh lebih tinggi dalam merespons perubahan data ekstrem

dibandingkan sistem heuristik (non-TinyML).

1. Respon Model terhadap Perubahan Data

Melalui analisis Reconstruction Error, model TinyML menunjukkan sensitivitas yang

presisi saat diberikan input suhu ekstrem seperti 50C atau 500 C; lonjakan nilai error ini menjadi

pemicu otomatis bagi sistem untuk menetapkan status anomali secara real-time. Berbeda dengan

sistem konvensional yang hanya bergantung pada ambang batas kaku, TinyML memvalidasi data

berdasarkan profil distribusi normal yang telah dipelajari.

Gambar 12. Validasi deteksi intelligence respon model

terhadap perubahan data

Perhitungan Reconstruction Error (MSE), hanya berlaku untuk TinyML karena sistem

heuristik tidak memiliki kemampuan rekonstruksi data. MSE dihitung saat model menerima input

suhu anomali (27,70C) dibandingkan dengan prediksi pola normalnya (24,80 C). lebihlanjut

perhitungan nya menggunakan MSE persamaan (1) berikut:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑥′𝑖)2

𝑛

𝑖=1

Langkah kerja

a. Selisih antara (𝑥𝑖 − 𝑥′𝑖)2

27,7 - 24’8 = 2,92 = 8,41

b. 𝑀𝑆𝐸 =
8,41

1
= 8,41

Analisis: Nilai MSE sebesar 8,41 ini jauh melampaui ambang batas internal model

(misal threshold = 1,0), sehingga sistem secara otomatis mengklasifikasikan data

tersebut sebagai Anomali.

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 180

2. Evaluasi Confusion Matrix untuk Membandingkan akurasi deteksi anomali antara sistem Non

TinyML dan TinyML.

Perbandingan antara sistem Non TinyML dan TinyML pada Gambar 3.10 menunjukkan

perbedaan signifikan dalam presisi identifikasi anomali. Sistem Non TinyML bekerja secara kaku

menggunakan ambang batas statis; ia hanya akan memberikan label anomali jika data melewati

angka ekstrem secara absolut, sehingga sering kali gagal mendeteksi anomali halus (misalnya,

kenaikan suhu yang tidak wajar namun masih di bawah batas) dan menghasilkan False Negatives

yang tinggi. Sebaliknya, TinyML menggunakan pendekatan statistik mendalam melalui pola

Reconstruction Error. Dengan metrik F1-Score yang merupakan rata-rata harmonik antara

Precision (ketepatan) dan Recall (kepekaan) TinyML terbukti lebih unggul dalam

menyeimbangkan deteksi. TinyML mampu mengenali 'konteks' data; ia tidak hanya mendeteksi

angka tinggi, tetapi juga perubahan perilaku sensor yang mencurigakan secara real-time. Hasilnya,

TinyML memiliki nilai F1-Score yang mendekati sempurna (ideal), meminimalkan alarm palsu

(False Positives) sekaligus memastikan tidak ada kejadian kritis yang terlewatkan

Gambar 13. Confusion Matrik perbandingan Heuristic vs Autoencoder (non TinyML dengan

TinyML)

Hasil evaluasi melalui Confusion Matrix menunjukkan tingkat True Positive yang lebih

tinggi, di mana TinyML berhasil membedakan fluktuasi suhu lingkungan yang wajar dengan

gangguan teknis sensor, sehingga secara signifikan mengurangi angka False Alarms. Validasi ini

menegaskan bahwa keputusan utama pada flowchart sistem berhasil mengeksekusi logika cerdas

di tingkat perangkat.

Dalam memvalidasi keunggulan TinyML, kita menggunakan tiga formula utama:yaitu Formula

(3,4, 5). Sistem ini gagal mendeteksi anomali karena ambang batasnya terlalu tinggi 350 C.

a. Sistem Heuristic (Non-TinyML)

1. Precision (Presisi) : Seberapa akurat model saat menebak anomali.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
0

0 + 0
= 0

2. Recall (Kepekaan): Seberapa banyak anomali asli yang berhasil ditangkap

𝑅𝑒𝑐𝑎𝑙𝑙 =
0

0 + 1
= 0

b. Sistem TinyML

1. Precision (Presisi) : Seberapa akurat model saat menebak anomali.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

1+0
= 1,0 (100%)

2. Recall (Kepekaan): Seberapa banyak anomali asli yang berhasil ditangkap

Noviardi dan Syely. R

Technologica 181

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

1+0
= 1,0 (100%)

3. Perhitungan F1-Score (Final) persamaan (2)

Sistem Heuristic (Non TinyML)

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
0 𝑥 0

0 +0
= 0

Sistem TinyML

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
1 𝑥 1

1 + 1
=

2

2
= 1,0 (100%)

Untuk lebih jelasnya validasi pada system Heuristic vs Autoencoder (non TinyML dengan

TinyML) dapat dilhat pada tabel dibawah ini

Tabel 6. Validasi pada system Heuristic VS Autoencoder (non TinyML dengan TinyML)

Metrik

Evaluasi
Sistem Non TinyML Sistem TinyML Kesimpulan

Akurasi Umum Rendah (Kaku) Sangat Tinggi

(Adaptif)

TinyML lebih cerdas.

Precision 0% 100% TinyML tidak memberikan

alarm palsu.

Recall 0% 100% TinyML tidak melewatkan

bahaya.

F1-Score 0.00 1.00 TinyML Sempurna.

Hasil perhitungan F1-Score menunjukkan perbedaan performa yang sangat kontras, di mana

sistem TinyML mencapai nilai sempurna (1.0) sementara sistem Heuristik berada pada nilai

terendah (0.0). Hal ini terjadi karena sistem heuristik hanya mampu mendeteksi anomali yang

bersifat ekstrem secara numerik (melewati 350C, sehingga ia kehilangan kemampuan 'intelegensi'

untuk mengenali suhu 27.70 C sebagai ancaman. Sebaliknya, TinyML melalui proses inferensi

lokal mampu memvalidasi bahwa suhu tersebut menyimpang dari profil normal, menghasilkan

nilai Recall yang tinggi tanpa mengorbankan Precision. Perbedaan skor ini membuktikan secara

matematis bahwa kecerdasan di tingkat edge mutlak diperlukan untuk sistem monitoring yang

kritis

3.5 Analisis Konprehensif

Secara keseluruhan, rangkaian pengujian yang telah dilakukan membuktikan bahwa

integrasi TinyML pada arsitektur Edge Computing memberikan peningkatan performansi yang

signifikan dibandingkan dengan sistem monitoring konvensional (Non-TinyML). Dari aspek

inteligensi, sistem berhasil mencapai Accuracy Score sempurna (1,0) dan F1-Score (1,0), di mana

model mampu mengenali anomali melalui lonjakan Reconstruction Error (MSE) sebesar 8,41

pada deviasi suhu yang halus, sebuah kondisi yang gagal divalidasi oleh sistem heuristik. Secara

operasional, meskipun terdapat alokasi memori dinamis sebesar 23 KB untuk menjalankan model,

sistem justru menunjukkan stabilitas deterministik pada ketersediaan RAM dan efisiensi termal

yang sangat baik dengan suhu kerja konstan di angka 24,73°C. Keunggulan ini diperkuat oleh

optimalisasi jalur data yang mampu mereduksi latensi transmisi hingga 24% lebih cepat (±16

detik) dibandingkan sistem pembanding. Dengan demikian, dapat disimpulkan bahwa

implementasi TinyML pada ESP32 bukan sekadar peningkatan fitur, melainkan sebuah

transformasi sistem yang menghasilkan perangkat monitoring yang jauh lebih cerdas, responsif,

dan reliabel untuk deteksi dini anomali di lingkungan penelitian. Terakhir, tabel berikut

menampilkan Ringkasan Parameter Keunggulan TinyML

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 182

Tabel 7. Ringkasan Parameter Keunggulan Model Autoencoder (TinyML)

Dimensi Evaluasi Indikator Keberhasilan Status Validasi

Validasi Inteligensi Akurasi 100% & F1-Score 1.0 Sangat Baik

Efisiensi Memori Konsumsi ±23 KB (Tanpa Memory Leak) Stabil

Responsivitas Latensi 16 detik (Lebih cepat 5 detik) Optimal

Integritas Fisik Suhu Kerja 24,73°C (Low Self-Heating) Aman

4. Kesimpulan

Penelitian ini menawarkan strategi konkret bagi industri untuk mengadopsi pemeliharaan

prediktif yang hemat biaya. Kemampuan menjalankan model Autoencoder pada perangkat

mikrokontroler terjangkau seperti ESP32 membuka peluang retrofitting mesin-mesin tua (legacy

equipment) menjadi aset cerdas tanpa ketergantungan pada infrastruktur cloud yang mahal.

Pendekatan ini memungkinkan desentralisasi pengawasan kondisi mesin, pengurangan latensi

respons secara drastis, serta peningkatan privasi data, sehingga menjadi model solusi yang skalabel

untuk diterapkan mulai dari sektor industri kecil menengah (IKM) hingga manufaktur skala besar

Meskipun menawarkan efisiensi yang signifikan, penelitian ini memiliki sejumlah

keterbatasan yang perlu diantisipasi. Penggunaan sensor DHT11 membatasi resolusi pengukuran

dan respons waktu, sehingga hasil eksperimen ini lebih merepresentasikan skenario low-cost

monitoring dibandingkan presisi tingkat industri. Selain itu, pengujian yang dilakukan dalam

lingkungan terkontrol mungkin belum sepenuhnya menangkap kompleksitas gangguan fisik di

lapangan, serta adanya potensi bias data temporal di mana model yang dilatih pada durasi terbatas

mungkin memerlukan pelatihan ulang (retraining) untuk beradaptasi dengan variasi kondisi

lingkungan jangka panjang. Berdasarkan hasil analisis dan pembahasan yang telah dilakukan,

dapat ditarik beberapa kesimpulan utama:

1. Validasi Inteligensi: Implementasi TinyML (Tiny Machine Learning) berhasil

meningkatkan akurasi deteksi anomali secara signifikan. Melalui penghitungan Mean

Squared Error (MSE) sebesar 8,41, sistem mampu mengenali deviasi suhu halus (27,70C

)sebagai anomali, sedangkan sistem konvensional gagal memvalidasi kondisi tersebut.

2. Performa Jaringan: Arsitektur Edge Computing terbukti memangkas jalur komunikasi data,

menghasilkan rata-rata latensi pengiriman ke platform ThingSpeak yang lebih rendah (16

detik) dibandingkan sistem Non-TinyML (21 detik).

3. Efisiensi Sumber Daya: Penggunaan model Machine Learning lokal tidak menyebabkan

degradasi fisik pada perangkat. Hal ini dibuktikan dengan suhu operasional yang stabil

pada 24,73°C (minimum self-heating) dan manajemen RAM yang konsisten tanpa adanya

indikasi kegagalan sistem.

4. Keunggulan Strategis: Secara keseluruhan, sistem TinyML memberikan keseimbangan

optimal antara kecerdasan buatan, kecepatan respons, dan ketahanan perangkat keras.

Untuk pengembangan penelitian selanjutnya, disarankan beberapa hal sebagai berikut:

1. Pengembangan Dataset: Melatih model dengan variasi data anomali yang lebih kompleks

(seperti kelembapan atau kualitas udara) agar sistem memiliki kecerdasan multivariate

dalam mendeteksi perubahan lingkungan.

2. Optimasi Konsumsi Daya: Mengintegrasikan fitur Deep Sleep pada ESP32 di sela-sela

waktu inferensi TinyML untuk meninjau lebih lanjut efisiensi konsumsi daya pada

penggunaan baterai jangka panjang.

Noviardi dan Syely. R

Technologica 183

3. Pengujian Skala Luas: Melakukan pengujian pada lingkungan luar ruangan (outdoor)

dengan fluktuasi cuaca yang lebih ekstrem untuk menguji ketahanan model terhadap

gangguan derau (noise) sensor yang lebih tinggi.

4. Hibridasi Model: Mencoba arsitektur model TinyML yang lebih ringan (seperti Quantized

Neural Network) untuk melihat kemungkinan reduksi penggunaan RAM di bawah 23 KB

tanpa menurunkan nilai F1-Score

Daftar Pustaka

Alajlan, N. N., & Ibrahim, D. M. (2022). TinyML : Enabling of Inference Deep Learning Models

on Ultra-Low-Power IoT Edge Devices for AI Applications. Micromachines, 13(6), 1–22.

https://doi.org/https://doi.org/10.3390/mi13060851

Barambones, O., & Apiñaniz, E. (2022). Scalable IoT Architecture for Monitoring IEQ Conditions

in Public and Private Buildings. Energies, 15(6), 1–23.

https://doi.org/https://doi.org/10.3390/en15062270

Behnke, I., & Austad, H. (2024). Real-Time Performance of Industrial IoT Communication

Technologies : A Review. IEEE Internet of Things Journal, 11(5), 1–13.

Bouman, R., & Heskes, T. (2024). Auto encodersfor Anomaly Detection Are Unrealiable. 1988,

1–14. https://doi.org/https://doi.org/10.48550/

Chikezie, C. ifeanyi, Okpara, T. cyprian, & Mmadumbu;, A. chidubem. (2025). Utoencoders For

Anomaly Detection: A Comprehensive Architectural Review, Comparative Insights, And

Practical Guidance. International Journal of Engineering, 8(5), 88–119.

https://doi.org/https://doi.org/10.70382/tijert.v08i5.010

Choi, J., Park, J., & Japesh, A. (2023). A Subspace Projection Approach to Autoencoder-based

Anomaly Detection. IEEE for Possible Publication.

https://doi.org/https://doi.org/10.48550/arXiv.2302.07643

Danladi, M. S., & Baykara, M. (2022). Design and Implementation of Temperature and Humidity

Monitoring System Using LPWAN Technology. International Information and Engineering

Technology Association, 27(4), 521–529. https://doi.org/https://doi.org/10.18280/isi.270401

Received:

Dhyani, S., & Butola, R. (2025). Autoencoders for ECG Anomaly Detection : A Survey. 02(01),

47–58.

Ficili, I., Giacobbe, M., & Tricomi, G. (2025). From Sensors to Data Intelligence : Leveraging

IoT , Cloud , and Edge Computing with AI. 1–25.

Immonen, R. (2022). Review Article Tiny Machine Learning for Resource- Constrained

Microcontrollers. 2022.

Laroui, M., Nour, B., Moungla, H., Cherif, M. A., & Afifi, H. (2021). Edge and fo computing for

IoT : A survey on current research activities & future directions. IEEE Access (2023),

180(July 2020), 210–231. https://doi.org/https://doi.org/10.1016/j.comcom.2021.09.003

Magadán F J, Suárez, L., & García, J. C. G. D. F. (2023). Low ‑ Cost Industrial IoT System for

Wireless Monitoring of Electric Motors Condition. Mobile Networks and Applications, 28(1),

97–106. https://doi.org/10.1007/s11036-022-02017-2

Merrill, N. (2020). Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly

Detection in Deep Learning. 8.

Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML

Technologica 184

Soro, S. (2020). TinyML for Ubiquitous Edge AI. In Mitre Tecnical Report (Issue 20).

Sudharsan, B., Salerno, S., Nguyen, D., Yahya, M., & Wahid, A. (2021). TinyML benchmark :

Executing fully connected neural networks on commodity microcontrollers TinyML

Benchmark : Executing Fully Connected Neural Networks on Commodity Microcontrollers.

10–12. https://doi.org/10.13025/rmkq-1966

