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Abstrak Penelitian ini membandingkan performa sistem monitoring lingkungan berbasis Edge 

Computing menggunakan Autoencoder Unsupervised Neural Network (TinyML) dengan metode 

Heuristic pada perangkat ESP32. Kebaruan penelitian ini terletak pada evaluasi komprehensif 

yang menyandingkan akurasi deteksi anomali dengan efisiensi sumber daya fisik (termal dan 

memori) yang belum banyak dibahas secara simultan dalam studi sebelumnya. Hasil analisis 

menunjukkan bahwa model TinyML memiliki superioritas kinerja dengan capaian F1-Score 

sempurna (1,0), melampaui sistem Heuristic yang gagal memvalidasi data transisi. Dari sisi 

operasional, TinyML menunjukkan efisiensi tinggi dengan stabilitas suhu kerja yang terjaga dan 

latensi pengiriman data 24% lebih cepat. Meskipun terdapat penggunaan memori tambahan untuk 

model, manajemen RAM terbukti tetap bersifat deterministik. Penelitian ini membuktikan bahwa 

implementasi Unsupervised Learning di tingkat edge menghasilkan sistem deteksi yang lebih 

cerdas dan responsif tanpa membebani kinerja fisik perangkat 

Kata Kunci: TinyML, Autoencoder, Unsupervised Learning, Heuristic, Edge Computing, 

ESP32. 

 

Abstract. This study compares the performance of an environmental monitoring system based on 

Edge Computing using an Autoencoder Unsupervised Neural Network (TinyML) against a 

Heuristic method on an ESP32 device. The novelty of this research lies in a comprehensive 

evaluation that simultaneously benchmarks anomaly detection accuracy against physical resource 

efficiency (thermal and memory)—an aspect rarely addressed in prior studies. Analysis results 

demonstrate that the TinyML model exhibits superior performance, achieving a perfect F1-Score 

(1.0) and outperforming the Heuristic system, which failed to validly detect transitional data. 

Operationally, TinyML demonstrates high efficiency, maintaining stable operating temperatures 

and achieving a 24% reduction in data transmission latency. Despite the additional memory 

overhead required for the model, RAM management proves to remain deterministic. This research 

confirms that implementing Unsupervised Learning at the edge results in a more intelligent and 

responsive detection system without compromising the device's physical performance. 

Keywords: TinyML, Autoencoder, Unsupervised Learning, Heuristic, Edge Computing, ESP32 

 

1. Pendahuluan  

Dalam ekosistem Industri 4.0, pemantauan lingkungan secara real-time merupakan pilar 

utama bagi pemeliharaan prediktif dan kontrol kualitas. Penggunaan sensor berbiaya rendah 

seperti DHT11 yang terintegrasi dengan mikrokontroler ESP32 memungkinkan digitalisasi data 
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suhu dan kelembaban langsung di tingkat edge. Implementasi ini secara signifikan meningkatkan 

daya tanggap sistem serta mengurangi latensi jika dibandingkan dengan solusi berbasis cloud 

tradisional (Barambones & Apiñaniz, 2022). Namun ketergantungan pada infrastruktur cloud yang 

masif seringkali memicu kendala berupa konsumsi bandwidth yang tidak efisien dan risiko 

keamanan data.(Laroui et al., 2021)  

Untuk mengatasi kendala infrastruktur terpusat, paradigma Edge Computing diadopsi guna 

memproses dan menganalisis data secara lokal. Pendekatan ini meminimalkan kebutuhan 

komunikasi cloud dan mengoptimalkan penggunaan sumber daya perangkat, yang pada gilirannya 

mendukung skalabilitas arsitektur industri (Magadán F J et al., 2023), (Danladi & Baykara, 2022). 

Lebih lanjut, implementasi kecerdasan buatan pada perangkat terbatas sumber daya, atau Tiny 

Machine Learning (TinyML), memfasilitasi pengambilan keputusan independen di tingkat edge 

(Alajlan & Ibrahim, 2022). TinyML mengatasi keterbatasan komputasi tepi tradisional melalui 

teknik seperti kuantisasi, yang mengoptimalkan ukuran model agar sesuai dengan kapasitas RAM 

mikrokontroler sekaligus menjaga privasi data (Immonen, 2022). 

Autoencoder (AE) telah diidentifikasi sebagai instrumen yang kuat untuk deteksi anomali 

tanpa pengawasan (unsupervised). Prinsip kerja model ini adalah memetakan input ke ruang laten 

berdimensi rendah dan kemudian merekonstruksinya kembali ke bentuk asli. Dalam proses ini, 

kesalahan rekonstruksi atau Mean Squared Error (MSE) berfungsi sebagai metrik utama; nilai 

kesalahan yang tinggi mengindikasikan adanya penyimpangan pola atau anomali (Bouman & 

Heskes, 2024), (Chikezie et al., 2025).  

Berbagai penelitian terdahulu telah mengeksplorasi efektivitas arsitektur ini pada data sensor 

(Merrill, 2020) menunjukkan bahwa AE mampu mengekstraksi fitur kompleks pada data yang 

berfluktuasi. Pengembangan lebih lanjut melibatkan penggunaan Variational Autoencoders 

(VAE) untuk menangkap ketidakpastian data secara lebih dinamis. Selain itu, teknik regularisasi 

pada ruang laten mulai diterapkan untuk mencegah model mempelajari pola anomali, yang krusial 

untuk menjaga akurasi deteksi di perangkat edge (Choi et al., 2023). Studi lain menegaskan bahwa 

optimasi neural network pada mikrokontroler komoditas dapat mencapai performa tinggi dengan 

beban komputasi yang tetap efisien (Sudharsan et al., 2021). 

Meskipun metode deteksi telah berkembang, terdapat kesenjangan teknis antara metode 

heuristik tradisional dan pendekatan berbasis kecerdasan buatan. Metode heuristik berbasis 

ambang batas statis (threshold) sering kali gagal mendeteksi anomali kontekstual yang halus—

situasi di mana nilai data masih berada dalam rentang normal tetapi polanya menunjukkan 

ketidakteraturan yang mencurigakan (Danladi & Baykara, 2022) Sebaliknya, adopsi TinyML 

menawarkan akurasi berbasis pola yang lebih tinggi namun sering dianggap memiliki beban 

memori yang terlalu berat bagi perangkat mikrokontroler (Immonen, 2022). 

Literatur saat ini banyak berfokus pada pengembangan model ML secara terpisah, namun 

masih sangat sedikit yang memberikan perbandingan sistematis (head-to-head) mengenai biaya 

sumber daya (resource cost) antara logika heuristik dan TinyML pada perangkat ESP32 (Soro, 

2020). Selain itu, minimnya penelitian yang membahas deteksi anomali pada data sensor DHT11 

yang sangat fluktuatif menjadi celah kritis yang perlu diisi. Belum ditemukan formula yang secara 

sistematis membandingkan rasio peningkatan akurasi terhadap penggunaan memori pada 

perangkat dengan keterbatasan sumber daya.  

 Penelitian ini hadir untuk mengisi kesenjangan tersebut dengan mengusulkan implementasi 

model Autoencoder berbasis TinyML yang dioptimalkan melalui teknik kuantisasi. Model ini 
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dirancang untuk mempelajari pola distribusi data normal secara mandiri dan dikonversi ke format 

TensorFlow Lite for Microcontrollers agar kompatibel dengan memori ESP32 yang terbatas. Hal 

ini memungkinkan evaluasi langsung terhadap efektivitas model AI dibandingkan metode 

konvensional dalam skenario industri nyata. Tujuan utama penelitian ini adalah melakukan 

kuantifikasi secara empiris terhadap efektivitas dan efisiensi sumber daya antara pendekatan 

heuristik dan TinyML. Kontribusi utama dari penelitian ini adalah penyediaan kerangka kerja 

benchmarking komprehensif yang membuktikan bahwa TinyML merupakan solusi berkelanjutan 

untuk menghadirkan kecerdasan tinggi pada mikrokontroler tanpa mengorbankan stabilitas fisik 

perangkat. Sebagai pembeda utama dari studi terdahulu, penelitian ini secara spesifik mengisi 

celah literatur (research gap) melalui analisis komparatif langsung antara validitas metode 

heuristik (aturan baku) dan adaptabilitas TinyML yang dieksekusi sepenuhnya pada arsitektur 

perangkat keras ESP32 

 

2. Metode 

Penelitian ini menerapkan metodologi eksperimental dengan mengintegrasikan arsitektur 

Autoencoder (AE) sebagai model TinyML berbasis unsupervised neural network yang dijalankan 

sepenuhnya pada lingkungan Edge Computing (Alajlan & Ibrahim, 2022). Pemilihan pendekatan 

TinyML ini didorong oleh kebutuhan akan sistem deteksi anomali yang efisien pada 

mikrokontroler ESP32 dengan sumber daya terbatas tanpa ketergantungan pada dataset berlabel 

yang besar (Immonen, 2022) Sebaliknya, logika heuristik berbasis ambang batas statis digunakan 

sebagai baseline Non-TinyML untuk mengevaluasi efektivitas relatif terhadap sistem IoT 

konvensional (Magadán F J et al., 2023). 

Proses penelitian dimulai dengan pengambilan data suhu dan kelembaban dari sensor 

DHT11, diikuti dengan pelatihan model AE secara offline untuk mempelajari pola distribusi data 

normal. Untuk memastikan model TinyML dapat berjalan secara efisien pada perangkat dengan 

RAM terbatas, diterapkan teknik kuantisasi yang memetakan nilai floating-point ke format presisi 

lebih rendah sebelum dikonversi ke format TensorFlow Lite for Microcontrollers. Penggunaan 

paradigma Edge Computing dalam eksperimen ini memungkinkan proses identifikasi anomali 

dilakukan secara real-time, mandiri, dan responsif tanpa ketergantungan pada konektivitas cloud. 

Melalui perbandingan head-to-head ini, penelitian bertujuan mengukur secara empiris 

peningkatan akurasi deteksi pola pada sistem TinyML dibandingkan dengan keterbatasan logika 

kaku pada sistem Non-TinyML. Dibawah ini dapat dilihat diagram alir Penelitian:  
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Gambar 1.  Diagram alir Tahapan Penelitian 

Tahap I: Implementasi Baseline (Heuristic) 

Penelitian dimulai dengan inisialisasi sistem untuk menjalankan siklus monitoring awal. 

Menggunakan ESP32, dimana ESP32 melakukan akuisisi data fisik melalui sensor DHT11. Dalam 

ekosistem Industri 4.0, pemantauan lingkungan secara real-time merupakan pilar utama bagi 

pemeliharaan prediktif dan kontrol kualitas. Pemilihan sensor DHT11 dalam penelitian ini 

didasarkan pada karakteristiknya yang menawarkan keseimbangan optimal antara efisiensi biaya 

dan kemudahan integrasi, menjadikannya representasi ideal untuk skenario penyebaran node 

sensor massal (massive deployment) pada industri dengan anggaran terbatas. Data tersebut 

kemudian diproses menggunakan logika heuristik melalui titik keputusan (decision point) untuk 

mengevaluasi apakah nilai suhu (T) atau kelembaban (H) melewati ambang batas statis 

(Threshold) yang ditentukan. Hasil pembacaan dan status awal ini kemudian dikirimkan ke cloud 

platform ThingSpeak sebagai dataset pembanding. 

Tahap II: Pengembangan Model dan Kuantisasi 

Dataset yang telah terkumpul di unduh untuk melalui proses pelatihan (training) 

menggunakan arsitektur Autoencoder di lingkungan Google Colab. Proses ini melibatkan 

optimalisasi model agar sesuai dengan spesifikasi Edge Computing melalui teknik kuantisasi. 

Setelah model mencapai performa optimal, dilakukan transformasi format menjadi file header (.h) 

agar dapat ditanamkan ke dalam memori mikrokontroler ESP32. 

Tahap III: Implementasi TinyML dan Inferensi Edge 

Pada tahap ini, model yang telah dikonversi dimuat ke dalam perangkat untuk memulai 

proses Inference. Berbeda dengan tahap pertama, sistem kini bekerja dengan menghitung nilai 



Noviardi dan Syely. R 

 

Technologica 169 

Reconstruction Error (RE) yang didefinisikan melalui rumus Mean Squared Error (MSE) 

(Bouman & Heskes, 2024)(Chikezie et al., 2025): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − 𝑥′𝑖)2𝑛

𝑖=1 …………………………………………………………(1) 

Di mana 𝑥 adalah data input sensor dan 𝑥′ adalah data hasil rekonstruksi model. Keputusan 

mengenai status anomali ditentukan melalui perbandingan antara nilai Reconstruction Error 

dengan ambang batas dinamis yang telah dipelajari model. Hasil analisis yang mencakup enam 

field data kemudian dikirimkan kembali ke ThingSpeak. 

Tahap IV: Analisis Statistik dan Validasi Akhir 

Tahap akhir melibatkan penarikan seluruh dataset untuk dilakukan evaluasi mendalam. 

Selain menggunakan Confusion Matrix untuk menghitung akurasi, dilakukan pula uji Mann-

Whitney U untuk menganalisis perbedaan penggunaan sumber daya (RAM) (Dhyani & Butola, 

2025). Rumus uji statistik yang digunakan adalah: 

𝑈 = 𝑛1𝑛2 +
𝑛1(𝑛𝑖+1)

2
− 𝑅1 …………………………………….………………… (2) 

Di mana n adalah jumlah sampel dan R adalah jumlah peringkat. Tahap validasi akhir 

menentukan apakah solusi TinyML memberikan performa yang lebih baik berdasarkan metrik F1-

Score. Jika hasil evaluasi belum memenuhi kriteria, maka alur penelitian akan kembali ke Tahap 

II untuk dilakukan penyesuaian parameter pelatihan. 

Tahap V: Analisis Statistik, Termal, dan Validasi Akhir 

Tahap akhir melibatkan penarikan seluruh dataset dari cloud untuk dilakukan evaluasi 

komprehensif melalui tiga parameter utama: 

1. Analisis Self-Heating dan Distribusi Termal: 

Untuk mengevaluasi dampak beban kerja komputasi Edge Computing terhadap suhu 

internal perangkat, dilakukan analisis distribusi suhu menggunakan metode Kernel Density 

Estimation (KDE). Hal ini bertujuan untuk memantau fenomena self-heating pada ESP32 

saat menjalankan proses Inference yang intensif. Secara matematis, stabilitas suhu 

dievaluasi dengan membandingkan varians (σ2) distribusi suhu antara sistem baseline dan 

TinyML untuk memastikan perangkat bekerja dalam batas suhu operasional yang aman. 

2. Analisis Latency dan Throughput: 

Efisiensi waktu respon sistem diukur melalui durasi pengiriman data end-to-end. Latensi 

dihitung berdasarkan selisih waktu antara stempel waktu (timestamp) pengumpulan data 

sensor hingga data berhasil diterima oleh gateway (Behnke & Austad, 2024). Throughput 

sistem dievaluasi untuk memastikan bahwa durasi Inference (rata-rata 16 ms) tidak 

menyebabkan penundaan (delay) pada interval pengiriman data, sebuah pendekatan yang 

krusial dalam menjaga efisiensi komputasi edge (Ficili et al., 2025). Hal ini dilakukan 

untuk menjamin kapabilitas real-time sistem deteksi saat data ditransmisikan ke platform 

ThingSpeak. 

3. Analisis Respon Deteksi Intelligence: 

Validasi kecerdasan model dilakukan dengan mengamati respon sistem terhadap 

perubahan data sensor secara dinamis (fluktuasi suhu ekstrim). Performa deteksi diukur 

menggunakan metrik Confusion Matrix untuk menghasilkan nilai Precision, Recall, dan 
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F1-Score. Kemampuan model dalam merespon perubahan data dievaluasi melalui nilai 

Reconstruction Error (RE); model dianggap cerdas jika mampu menghasilkan lonjakan 

nilai (RE) yang signifikan secara instan saat terjadi deviasi pola data (anomali)(Dhyani & 

Butola, 2025) , yang kemudian divalidasi dengan rumus: 

𝐹1 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙 
…………………………………………………..(3) 

Tahap validasi akhir menentukan apakah solusi TinyML memberikan performa yang lebih 

baik berdasarkan seluruh parameter di atas. Jika hasil evaluasi menunjukkan ketidakstabilan suhu 

(overheating) atau kegagalan respon deteksi, maka alur penelitian akan kembali ke Tahap II untuk 

optimasi model lebih lanjut. 

 

3. Hasil dan Pembahasan 

Bagian ini memaparkan bukti empiris bahwa implementasi TinyML Autoencoder pada 

ESP32 menawarkan superioritas dalam sensitivitas deteksi anomali dibandingkan logika heuristik, 

dengan tetap mempertahankan efisiensi sumber daya yang kritis. Hasil pengujian menunjukkan 

stabilitas yang konsisten pada konsumsi memori dan profil termal, serta memastikan bahwa 

integrasi kecerdasan buatan tidak mengganggu latensi transmisi data secara real-time. Temuan ini 

diperkuat melalui validasi statistik yang mengonfirmasi keandalan sistem dalam skenario 

operasional dengan keterbatasan daya.  

3.1 Hasil dan Analisis Kinerja Sistem Baseline/Heuristic 

Rangkaian yang diterapkan pada penelitian ini dirancang menggunakan aplikasi online 

https://www.circuito.io dengan hasil seperti gambar dibawah ini:  

 

 

 

 

 

 

 

Gambar 2. Rancangan Rangkaian ESP32 dan sensor DHT11 dan Penerapannya 

Board ESP32 di integrasikan dengan Cloud IoT Platform Thingspeak, dengan Chanel ID : 

3194325, dan API Key : 6GU8IGJJRWSYM2IU. Data real time diambil berdasarkan suhu dan 

kelembaban normal Kota Payakumbuh, dengan rentang 18°C atau di atas 34°C, dan sengaja 

rentang pada Heuristic baseline dterapkan 12°C atau di atas 35°C, mengingat jika terjadi lonjakan 

atau penurunan suhu drastic, sedangkan untuk kelembaban diambil rentang 30% - 95% 

Sedangkan untuk penerapan model TinyML pada Autoencoder yang neparkan Unsupervised 

Neural Network diImplementasi metode Min-Max Scaling pada sistem TinyML ini menggunakan 

dua array referensi, yaitu minv dan maxv, untuk menormalisasi variabel masukan ke dalam rentang 

https://www.circuito.io/
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yang seragam. Berdasarkan nilai yang ditetapkan, proses penyekalaan dilakukan secara spesifik 

pada tiap indeks: indeks ke-0 mengatur parameter suhu dalam rentang 15.0 hingga 50.0, indeks 

ke-1 memetakan kelembapan antara 20.0 hingga 90.0, sedangkan indeks ke-2 mencakup nilai 0.0 

hingga 300.0 yang kemungkinan merepresentasikan durasi proses atau metrik sensor lainnya. 

Selanjutnya, indeks ke-3 menangani nilai magnitudo besar antara 80000.0 hingga 200000.0 yang 

merepresentasikan penggunaan memori (Free Heap), dan indeks ke-4 berfungsi sebagai 

penskalaan status biner atau variabel indikator dalam rentang 0.0 hingga 1.0.  

Pada penelitian ini berikan perlakuan suhu dengan sengaja dinaikkan menggunakan pemanas 

yang didekatkan dengan sensor DHT11 dan turunkan dengan menggunakan pendingin freezer, 

untuk mendeteksi sesitifitas kinerja borad ESP32. Dibawah ini dapat dilihat hasil Tampilan kinerja 

ESP32 Non TinyML dan ESP32 dengan TinyML pada private view thingspeak. 
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Gambar 3. Hasil data ESP32 Heuristic (Non TinyML) dan ESP32 dengan model Autoencoder 

(TinyML) pada Cloud IoT Platform Thingspeaks  

Data yang dikumpulkan melalui platform ThingSpeak diekstraksi dalam format Comma-

Separated Values (CSV) untuk diproses lebih lanjut. Tahap pengolahan dan analisis data dilakukan 

menggunakan lingkungan Google Colab, yang kemudian menghasilkan visualisasi perbandingan 

kinerja sebagaimana disajikan pada grafik dibawah ini :  

 

 

 

 

 

 

Gambar 4. Sistem deteksi baseline Heuristic (Non TinyML) 

 

 

 

 

 

 

Gambar 5.  Hasil deteksi dengan model Autoencoder (TinyML) 
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Analisis komparatif antara data dari Grafik pada Gambar 3.2 dan 3.3 menunjukkan 

perbedaan fundamental dalam mekanisme deteksi anomali antara sistem berbasis ambang batas 

konvensional dengan sistem berbasis kecerdasan buatan di tingkat edge. Pada grafik Non-TinyML, 

sistem beroperasi secara normal dengan nilai status yang konstan di angka 0, karena fluktuasi suhu 

stabil di kisaran 24.8°C dan tidak mampu mengenali penyimpangan situasional selama data belum 

melampaui ambang batas statis 35°C. Sebaliknya, grafik TinyML menunjukkan kapabilitas 

deteksi yang lebih responsif dan cerdas, di mana variabel field6 secara dinamis berubah menjadi 

angka 1 (anomali) saat model jaringan saraf tiruan mendeteksi pola suhu yang tidak wajar, seperti 

pada lonjakan hingga 27.7°C. Sementara metode statistik seperti Z-Score pada sistem 

konvensional memerlukan pemrosesan batch pasca-data dikumpulkan untuk mengidentifikasi 

outlier, sistem TinyML pada perangkat ESP32 mampu melakukan inferensi secara real-time untuk 

mengenali anomali berdasarkan konteks pola yang telah dipelajari, bukan sekadar berdasarkan 

batasan angka numerik semata. Tabel. 1 dibawah ini dapat menjelaskan perbedaan kenirja anatara 

dua perlakuan diatas.  

Tabel 1. Perbandingan Sistem Heuristic vs Autoencoder (Non TinyML dengan TinyML) 

Kriteria 

Perbandingan 
Sistem Non-TinyML (Banding) Sistem TinyML (Inferensi Edge) 

Metode Deteksi Ambang Batas Statis (Hardcoded 

Threshold) 

Model Jaringan Saraf Tiruan 

(Neural Network) 

Logika Operasional if (suhu > 35.0) Pengenalan Pola (Pattern 

Recognition) 

Status Field 6 Konstan 0 (Selalu dianggap 

normal) 

Dinamis 0 atau 1 (Deteksi cerdas) 

Rentang Suhu 

Terukur 

Sangat stabil (~24.7°C - 24.9°C) Lebih variatif (~24.7°C - 27.7°C) 

Respons terhadap 

Pola 

Mengabaikan lonjakan selama di 

bawah 35°C 

Menandai suhu 27°C sebagai 

anomali situasional 

Ketergantungan 

Cloud 

Tinggi (Analisis statistik 

dilakukan di luar) 

Rendah (Keputusan diambil 

langsung di ESP32) 

Akurasi 

Kontekstual 

Rendah (Hanya melihat angka 

mutlak) 

Tinggi (Melihat perilaku data 

terhadap waktu) 

Deteksi Z-Score Memerlukan data historis (Batch) Berjalan secara Real-time (Per poin 

data) 

3.2 Perbandingan Efisiensi Memori 

Analisis ketersediaan memori dinamis (Free Heap) menunjukkan perbedaan alokasi sumber 

daya yang signifikan namun konsisten antara kedua sistem. Pada sistem Non-TinyML, rata-rata 

memori bebas berada di angka 237.221 Bytes. Angka ini mencerminkan beban kerja minimal 

karena perangkat hanya melakukan pembacaan sensor dan pengiriman data tanpa proses 

komputasi berat. Sementara itu pada Gambar 6, pada sistem TinyML, rata-rata memori bebas 

menurun menjadi 213.862 Bytes. Selisih penggunaan memori sebesar kurang lebih 23.358 Bytes 

(sekitar 23 KB) ini merupakan "investasi" memori yang digunakan untuk memuat arsitektur model 

Neural Network (bobot dan bias) serta menyediakan tensor arena untuk proses inferensi. 

Meskipun kapasitas RAM yang tersisa lebih sedikit, distribusi memori pada sistem TinyML tetap 

terjaga dalam rentang yang stabil (min: 211.100 B, max: 216.240 B). Hal ini mengindikasikan 

bahwa model telah teroptimasi dengan baik untuk berjalan di atas perangkat ESP32 tanpa 

menyebabkan risiko memory overflow. Data ini membuktikan bahwa implementasi TinyML di 
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perangkat ESP32 hanya membutuhkan pengorbanan sekitar 10% dari total RAM yang tersedia 

untuk memberikan kemampuan deteksi anomali yang cerdas. Rasio ini tergolong sangat efisien 

untuk sistem embedded. 

 

  

 

 

 

 

 

Gambar 6. Perbandingan Rata Rata Free RAM Heuristic vs Autoencoder Non TinyML  

 

Gambar 7. Hasil perbandingan distribusi memori terhadap free RAM Heuristic vs Autoencoder  

(Non TinyML dengan TinyML) 

Bukti keandalan sistem dalam jangka panjang juga terlihat pada grafik Time Series Gambar 

8. Kedua sistem menunjukkan garis tren horizontal yang stabil sepanjang lebih dari 4.000 sampel 

indeks. Tidak adanya tren penurunan memori secara bertahap (step-down) membuktikan bahwa 

sistem bebas dari kebocoran memori (memory leakage). Stabilitas ini sangat krusial bagi aplikasi 

IoT industri yang menuntut uptime tinggi tanpa perlu reboot akibat fragmentasi memori. 

 
Gambar 8. Perbandingan Stabilitas memory (time series) Heuristic vs Autoencoder  (Non 

TinyML dengan TinyML) 
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Untuk memvalidasi perbedaan antara Non TinyML dengan TinyML ini, dilakukan pengujian 

Mann-Whitney U yang menghasilkan  nilai p < 0,001, dari analisa formula dibawah ini: 

Tabel 2.   Data nilai free RAM Non TinyML dan TinyML 

Sampel Non-TinyML (n1) TinyML (n2) 

1-10 237220, 237225, 237218, 237230, 

237215, 237222, 237228, 237219, 

237224, 237221 

213860, 213865, 213858, 213870, 

213855, 213862, 213868, 213859, 

213864, 213861 

 

a. Jumlah rank (R) 

R1 (Non TinyML = 11+12+13+14+15+16+17+18+19+20 = 155 

R2 (TinyML) = 1+2+3+4+5+6+7+8+9+10 = 55 

b. Menghitung  U dengan rumus (2) 

𝑈 = 𝑛1𝑛2 +
𝑛1(𝑛𝑖 + 1)

2
− 𝑅1 

    

𝑈 = (10)(10) +
10(11)

2
− 155 

𝑈 = 100 + 55 − 155 = 0 

c. Menghitung Z-Score: Untuk sampel n > 8, kita menggunakan pendekatan distribusi 

normal.𝑚𝑈 =
𝑛1𝑛2

2
=

100

2
= 50 

 

d. Standar deviasi (σU)𝜎𝑈 = √𝑛1𝑛2(𝑛1+𝑛2+1)

12
= √

100(21)

12
=  √175 ≈ 13,23 

 

e. Maka Z-Score (Z)= =
𝑈−𝑚𝑈

𝜎𝑈
=

0−50

13,23 
≈ −3,78 

Hasil pengujian menunjukkan nilai U = 0 dengan Z = -3,78, yang menghasilkan nilai 

signifikansi p < 0,001. Statistik ini mengonfirmasi bahwa penambahan model Autoencoder 

memberikan beban memori yang berbeda nyata dibandingkan sistem heuristik, namun tetap berada 

dalam batas toleransi aman. 

Rangkuman lengkap perbandingan kinerja memori, parameter statistik, dan efisiensi sumber 

daya antara kedua metode disajikan dalam Tabel 3 berikut: 

Tabel 3. Analisis komparatif efisiensi Memory Heuristic vs Autoencoder (Non TinyML 

dengan TinyML) 

Parameter 

Evaluasi 

Sistem Non-

TinyML 

(Heuristic) 

Sistem TinyML 

(Autoencoder) 

Selisih / 

Overhead 

Keterangan / 

Interpretasi 

Rata-rata Free 

RAM 

$237.221$ Bytes $213.863$ Bytes $23.358$ 

Bytes 

Signifikan secara 

statistik ($p < 

0,001$) 

Rentang 

Memori (Min - 

Max) 

$236.820$ - 

$239.344$ B 

$211.100$ - 

$216.240$ B 

- Distribusi stabil 

pada kedua sistem 



Unsupervised Autoencoder untuk Deteksi Anomali Cerdas pada Perangkat Edge Computing Berbasis TinyML 

 

Technologica 176 
 

Konsumsi 

Model 

(Estimasi) 

0 KB (Firmware 

Dasar) 

~23 KB (Model + 

Engine) 

+23 KB Alokasi untuk 

Tensor Arena 

Overhead RAM 

(%) 

0% (Baseline) 9,84% 9,84% Rasio efisien untuk 

ESP32 

Stabilitas Stack 25 Bytes 25 Bytes 0 Sangat Stabil 

(Identik) 

Indikasi 

Memory Leak 

Tidak Ada Tidak Ada - Garis tren linear 

(horizontal) 

  

3.3 Karakteristik Operasional Edge Computing (iNference TinyML) 

Pada tahap ini didiskusikan tentang temuan dari hasil penelitian ini yaitu kondisi pada 

perilaku fisik dan kecepatan perangkat saat menjalankan tugas kecerdasan buatan secara local. 

Selain itu juga membahas stabilitas suhu operasional ESP32. Meskipun melakukan komputasi 

berat, distribusi suhu tetap terpusat pada angka efisien (24,73°C) juga dideskripsikan Latency dan 

Throughput data guna mengevaluasi interval pengiriman data ke ThingSpeak, untuk membuktikan 

bahwa pemrosesan lokal (Edge Computing) justru menghasilkan transmisi yang lebih stabil dan 

cepat. 

1. Analisis Self-Heating (Efisiensi Termal) 

Dari data yang diperoleh ditemukan bahwa karakteristik fisik perangkat menunjukkan 

efisiensi termal yang luar biasa melalui pengamatan fenomena Self-Heating selama proses 

komputasi berlangsung. Meskipun ESP32 memikul beban kerja yang lebih berat untuk 

mengeksekusi algoritma Neural Network secara kontinu, stabilitas suhu operasional perangkat 

tetap terjaga dengan sangat baik. Data menunjukkan bahwa distribusi suhu kerja tetap terpusat 

secara konsisten pada angka efisien, yakni 24,73°C, tanpa adanya lonjakan panas yang signifikan 

(thermal spiking). Hal ini membuktikan bahwa optimasi model TinyML pada tingkat edge tidak 

hanya efisien secara perangkat lunak, tetapi juga secara fisik; penggunaan instruksi aritmatika 

yang teroptimasi mampu meminimalkan disipasi daya pada inti prosesor. Stabilitas termal pada 

suhu rendah ini sangat menguntungkan bagi reliabilitas jangka panjang perangkat IoT, karena 

mengurangi risiko degradasi komponen akibat stres panas, sehingga menjamin akurasi sensor suhu 

lingkungan tetap objektif tanpa terpengaruh oleh panas internal dari aktivitas central processing 

unit (CPU). Dibawah ini dapat dilihat pada grafik dibawah ini  

 

 

 

 

 

 

 

 

 

 

Gambar 9. Grafik Self Heating Heuristic vs Autoencoder  (Non TinyML dengan TinyML) 
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Untuk lebih jelasnya temuan diatas dapat dilihat pada Tabel 5. Hasil Perbandingan Self 

Heating Non TinyML dan TinyML 

Tabel 4. Hasil Perbandingan Self Heating Heuristic vs Autoencoder (Non TinyML dengan 

TinyML) 

Parameter 

Termal 

Sistem Non-

TinyML (Banding) 

Sistem TinyML 

(Edge AI) 

Analisis Dampak 

Suhu Operasional 

Rata-rata 

± 24,81°C ± 24,73°C TinyML menunjukkan 

efisiensi termal yang lebih 

baik (lebih dingin). 

Stabilitas 

Distribusi Suhu 

Fluktuatif (Rentang 

Luas) 

Sangat Stabil 

(Terpusat) 

Distribusi suhu TinyML 

sangat konsisten pada satu 

titik. 

Beban Kerja 

Prosesor 

Rendah (Hanya 

Kirim Data) 

Tinggi (Inferensi 

Model AI) 

Meskipun beban komputasi 

naik, suhu tidak ikut naik 

secara linear. 

Gejala Panas 

Berlebih 

Tidak Ada Tidak Ada Optimasi TinyML berhasil 

menekan disipasi daya pada 

chip. 

Integritas Sensor Sangat Baik Sangat Baik Panas internal tidak 

mengintervensi pembacaan 

sensor eksternal. 

Kondisi Termal 

Perangkat 

Dingin / Idle Dingin / Efisien Penggunaan instruksi 

teroptimasi menjaga suhu 

tetap rendah. 

 

Data ini membuktikan hipotesis bahwa Edge Computing tidak berarti menguras energi 

secara berlebihan atau merusak perangkat. Dengan suhu yang tetap dingin (24,7°C), sistem ini 

sudah siap untuk dipasang secara permanen (long-term deployment) Analisis Latency dan 

Throughput.  
 

2. Analisis terhadap parameter Latensi dan Throughput 

Selanjutnya parameter Latensi dan Throughput yang diperoleh dari penelitian ini 

menunjukkan keunggulan performansi yang signifikan pada arsitektur Edge Computing (TinyML) 

dibandingkan dengan sistem monitoring konvensional. Berdasarkan tren temporal, sistem TinyML 

menunjukkan konsistensi interval pengiriman data yang lebih rapat dan stabil, dengan rata-rata 

latensi berada di kisaran 16 detik. Hal ini dimungkinkan karena proses inferensi dilakukan secara 

lokal pada ESP32, sehingga perangkat dapat segera melakukan transmisi data ke ThingSpeak tepat 

setelah keputusan diambil tanpa hambatan siklus tunggu yang panjang. Sebaliknya, sistem Non-

TinyML memperlihatkan latensi yang lebih tinggi dan fluktuatif dengan rata-rata 21 detik, yang 

mengindikasikan ketidakstabilan Throughput akibat ketergantungan pada pemrosesan data 

mentah. Secara distributif, grafik histogram mengonfirmasi bahwa TinyML memiliki kerapatan 

data yang tinggi pada interval waktu yang sempit, sementara Non-TinyML tersebar lebih lebar. 

Stabilitas latensi pada sistem TinyML ini sangat krusial dalam konteks deteksi dini anomali, 

karena menjamin responsivitas sistem yang lebih cepat dan deterministik dalam melaporkan 

kondisi kritis di lapangan. Untuk lebih jelasnya dapat dilihat dari Gambar dibawah ini  
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Gambar 10. Tren Latency (pengiriman data) per detik Heuristic vs Autoencoder (Non 

TinyML dengan TinyML) 

 

 

 

 

 

 

Gambar 11. Distribusi Latency (Kerapatan Throughput) Heuristic vs Autoencoder (Non 

TinyML dengan TinyML) 

Dibawah ini ditampilkan tabel perbandingan Latency dan throuhtpu antara Non TinyML 

dan TinyML 

Tabel 5. Perbandingan Latency dan throuhtput antara Heuristic vs Autoencoder (non 

TinyML dengan TinyML) 

Indikator 

Performa 

Non-TinyML 

(Banding) 

TinyML (Edge 

Inference) 

Interpretasi Teknis 

Rata-rata 

Latensi 

± 21,0 Detik ± 16,0 Detik TinyML lebih cepat 23,8% 

dalam transmisi. 

Stabilitas (Std 

Dev) 

Tinggi (Lebih 

Variatif) 

Rendah (Lebih 

Presisi) 

Pengiriman data TinyML 

lebih terjadwal. 

Kerapatan 

Throughput 

Tersebar/Renggang Terpusat/Rapat Volume data per menit lebih 

tinggi pada TinyML. 

Efisiensi Waktu Pasif (Menunggu) Aktif (Real-time) Inferensi lokal 

menghilangkan waktu tunggu 

cloud. 

Reliabilitas Moderat Sangat Tinggi Meminimalkan risiko data 

hilang akibat latensi. 

Dari tabel diatas dapat diasumsikan bahwa Integrasi TinyML tidak hanya meningkatkan 

"kecerdasan" sensor, tetapi juga mengoptimalkan jalur komunikasi data. Dengan latensi yang lebih 
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rendah dan Throughput yang lebih stabil, sistem mampu memberikan peringatan bahaya (anomali) 

ke platform ThingSpeak dengan jeda waktu yang minimal. Hal ini membuktikan bahwa beban 

komputasi tambahan di tingkat edge tidak memperlambat kinerja, melainkan justru 

mengefisiensikan siklus hidup data secara keseluruhan 

3.4 Validasi Inteligensi dan Akurasi 

Tahap validasi akhir ini membuktikan bahwa arsitektur Edge Computing berbasis TinyML 

memiliki kecerdasan situasional yang jauh lebih tinggi dalam merespons perubahan data ekstrem 

dibandingkan sistem heuristik (non-TinyML).  

1. Respon Model terhadap Perubahan Data 

Melalui analisis Reconstruction Error, model TinyML menunjukkan sensitivitas yang 

presisi saat diberikan input suhu ekstrem seperti 50C atau 500 C; lonjakan nilai error ini menjadi 

pemicu otomatis bagi sistem untuk menetapkan status anomali secara real-time. Berbeda dengan 

sistem konvensional yang hanya bergantung pada ambang batas kaku, TinyML memvalidasi data 

berdasarkan profil distribusi normal yang telah dipelajari.  

 

 

  

 

 

 

  

Gambar 12. Validasi deteksi intelligence respon model  

terhadap perubahan data 

Perhitungan Reconstruction Error (MSE), hanya berlaku untuk TinyML karena sistem 

heuristik tidak memiliki kemampuan rekonstruksi data. MSE dihitung saat model menerima input 

suhu anomali (27,70C) dibandingkan dengan prediksi pola normalnya (24,80 C). lebihlanjut 

perhitungan nya menggunakan MSE persamaan (1) berikut:  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑥′𝑖)2

𝑛

𝑖=1

 

Langkah kerja 

a. Selisih antara (𝑥𝑖 − 𝑥′𝑖)2 

27,7  - 24’8 = 2,92 = 8,41 

b. 𝑀𝑆𝐸 =
8,41

1
= 8,41 

Analisis: Nilai MSE sebesar 8,41 ini jauh melampaui ambang batas internal model 

(misal threshold = 1,0), sehingga sistem secara otomatis mengklasifikasikan data 

tersebut sebagai Anomali. 
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2. Evaluasi Confusion Matrix untuk Membandingkan akurasi deteksi anomali antara sistem Non 

TinyML dan TinyML. 

Perbandingan antara sistem Non TinyML dan TinyML pada Gambar 3.10  menunjukkan 

perbedaan signifikan dalam presisi identifikasi anomali. Sistem Non TinyML bekerja secara kaku 

menggunakan ambang batas statis; ia hanya akan memberikan label anomali jika data melewati 

angka ekstrem secara absolut, sehingga sering kali gagal mendeteksi anomali halus (misalnya, 

kenaikan suhu yang tidak wajar namun masih di bawah batas) dan menghasilkan False Negatives 

yang tinggi. Sebaliknya, TinyML menggunakan pendekatan statistik mendalam melalui pola 

Reconstruction Error. Dengan metrik F1-Score yang merupakan rata-rata harmonik antara 

Precision (ketepatan) dan Recall (kepekaan) TinyML terbukti lebih unggul dalam 

menyeimbangkan deteksi. TinyML mampu mengenali 'konteks' data; ia tidak hanya mendeteksi 

angka tinggi, tetapi juga perubahan perilaku sensor yang mencurigakan secara real-time. Hasilnya, 

TinyML memiliki nilai F1-Score yang mendekati sempurna (ideal), meminimalkan alarm palsu 

(False Positives) sekaligus memastikan tidak ada kejadian kritis yang terlewatkan 

 

 

 

 

 

 

 

 
 

Gambar 13. Confusion Matrik perbandingan Heuristic vs Autoencoder (non TinyML dengan 

TinyML) 

Hasil evaluasi melalui Confusion Matrix menunjukkan tingkat True Positive yang lebih 

tinggi, di mana TinyML berhasil membedakan fluktuasi suhu lingkungan yang wajar dengan 

gangguan teknis sensor, sehingga secara signifikan mengurangi angka False Alarms. Validasi ini 

menegaskan bahwa keputusan utama pada flowchart sistem berhasil mengeksekusi logika cerdas 

di tingkat perangkat.  

Dalam memvalidasi keunggulan TinyML, kita menggunakan tiga formula utama:yaitu Formula 

(3,4, 5). Sistem ini gagal mendeteksi anomali karena ambang batasnya terlalu tinggi 350 C. 

a. Sistem Heuristic (Non-TinyML) 

1. Precision (Presisi) : Seberapa akurat model saat menebak anomali. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
0

0 + 0
= 0 

2. Recall (Kepekaan): Seberapa banyak anomali asli yang berhasil ditangkap 

𝑅𝑒𝑐𝑎𝑙𝑙 =
0

0 + 1
= 0 

b. Sistem TinyML 

1. Precision (Presisi) : Seberapa akurat model saat menebak anomali. 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

1+0
= 1,0 (100%) 

2. Recall (Kepekaan): Seberapa banyak anomali asli yang berhasil ditangkap 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
1

1+0
= 1,0 (100%) 

3. Perhitungan F1-Score (Final) persamaan (2) 

Sistem Heuristic (Non TinyML) 

                     𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
0 𝑥 0

0 +0
= 0  

Sistem TinyML 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
1 𝑥 1

1 + 1
=

2

2
= 1,0 (100%) 

Untuk lebih jelasnya validasi pada system Heuristic vs Autoencoder (non TinyML dengan 

TinyML) dapat dilhat pada tabel dibawah ini  

Tabel 6. Validasi pada system Heuristic VS Autoencoder (non TinyML dengan TinyML) 

Metrik 

Evaluasi 
Sistem Non TinyML Sistem TinyML Kesimpulan 

Akurasi Umum Rendah (Kaku) Sangat Tinggi 

(Adaptif) 

TinyML lebih cerdas. 

Precision 0% 100% TinyML tidak memberikan 

alarm palsu. 

Recall 0% 100% TinyML tidak melewatkan 

bahaya. 

F1-Score 0.00 1.00 TinyML Sempurna. 

 

Hasil perhitungan F1-Score menunjukkan perbedaan performa yang sangat kontras, di mana 

sistem TinyML mencapai nilai sempurna (1.0) sementara sistem Heuristik berada pada nilai 

terendah (0.0). Hal ini terjadi karena sistem heuristik hanya mampu mendeteksi anomali yang 

bersifat ekstrem secara numerik (melewati 350C, sehingga ia kehilangan kemampuan 'intelegensi' 

untuk mengenali suhu 27.70 C sebagai ancaman. Sebaliknya, TinyML melalui proses inferensi 

lokal mampu memvalidasi bahwa suhu tersebut menyimpang dari profil normal, menghasilkan 

nilai Recall yang tinggi tanpa mengorbankan Precision. Perbedaan skor ini membuktikan secara 

matematis bahwa kecerdasan di tingkat edge mutlak diperlukan untuk sistem monitoring yang 

kritis 

3.5 Analisis Konprehensif 

Secara keseluruhan, rangkaian pengujian yang telah dilakukan membuktikan bahwa 

integrasi TinyML pada arsitektur Edge Computing memberikan peningkatan performansi yang 

signifikan dibandingkan dengan sistem monitoring konvensional (Non-TinyML). Dari aspek 

inteligensi, sistem berhasil mencapai Accuracy Score sempurna (1,0) dan F1-Score (1,0), di mana 

model mampu mengenali anomali melalui lonjakan Reconstruction Error (MSE) sebesar 8,41 

pada deviasi suhu yang halus, sebuah kondisi yang gagal divalidasi oleh sistem heuristik. Secara 

operasional, meskipun terdapat alokasi memori dinamis sebesar 23 KB untuk menjalankan model, 

sistem justru menunjukkan stabilitas deterministik pada ketersediaan RAM dan efisiensi termal 

yang sangat baik dengan suhu kerja konstan di angka 24,73°C. Keunggulan ini diperkuat oleh 

optimalisasi jalur data yang mampu mereduksi latensi transmisi hingga 24% lebih cepat (±16 

detik) dibandingkan sistem pembanding. Dengan demikian, dapat disimpulkan bahwa 

implementasi TinyML pada ESP32 bukan sekadar peningkatan fitur, melainkan sebuah 

transformasi sistem yang menghasilkan perangkat monitoring yang jauh lebih cerdas, responsif, 

dan reliabel untuk deteksi dini anomali di lingkungan penelitian. Terakhir, tabel berikut 

menampilkan Ringkasan Parameter Keunggulan TinyML  
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Tabel 7. Ringkasan Parameter Keunggulan Model Autoencoder (TinyML) 

Dimensi Evaluasi Indikator Keberhasilan Status Validasi 

Validasi Inteligensi Akurasi 100% & F1-Score 1.0 Sangat Baik 

Efisiensi Memori Konsumsi ±23 KB (Tanpa Memory Leak) Stabil 

Responsivitas Latensi 16 detik (Lebih cepat 5 detik) Optimal 

Integritas Fisik Suhu Kerja 24,73°C (Low Self-Heating) Aman 

 

4. Kesimpulan 

Penelitian ini menawarkan strategi konkret bagi industri untuk mengadopsi pemeliharaan 

prediktif yang hemat biaya. Kemampuan menjalankan model Autoencoder pada perangkat 

mikrokontroler terjangkau seperti ESP32 membuka peluang retrofitting mesin-mesin tua (legacy 

equipment) menjadi aset cerdas tanpa ketergantungan pada infrastruktur cloud yang mahal. 

Pendekatan ini memungkinkan desentralisasi pengawasan kondisi mesin, pengurangan latensi 

respons secara drastis, serta peningkatan privasi data, sehingga menjadi model solusi yang skalabel 

untuk diterapkan mulai dari sektor industri kecil menengah (IKM) hingga manufaktur skala besar 

Meskipun menawarkan efisiensi yang signifikan, penelitian ini memiliki sejumlah 

keterbatasan yang perlu diantisipasi. Penggunaan sensor DHT11 membatasi resolusi pengukuran 

dan respons waktu, sehingga hasil eksperimen ini lebih merepresentasikan skenario low-cost 

monitoring dibandingkan presisi tingkat industri. Selain itu, pengujian yang dilakukan dalam 

lingkungan terkontrol mungkin belum sepenuhnya menangkap kompleksitas gangguan fisik di 

lapangan, serta adanya potensi bias data temporal di mana model yang dilatih pada durasi terbatas 

mungkin memerlukan pelatihan ulang (retraining) untuk beradaptasi dengan variasi kondisi 

lingkungan jangka panjang. Berdasarkan hasil analisis dan pembahasan yang telah dilakukan, 

dapat ditarik beberapa kesimpulan utama: 

1. Validasi Inteligensi: Implementasi TinyML (Tiny Machine Learning) berhasil 

meningkatkan akurasi deteksi anomali secara signifikan. Melalui penghitungan Mean 

Squared Error (MSE) sebesar 8,41, sistem mampu mengenali deviasi suhu halus (27,70C 

)sebagai anomali, sedangkan sistem konvensional gagal memvalidasi kondisi tersebut. 

2. Performa Jaringan: Arsitektur Edge Computing terbukti memangkas jalur komunikasi data, 

menghasilkan rata-rata latensi pengiriman ke platform ThingSpeak yang lebih rendah (16 

detik) dibandingkan sistem Non-TinyML (21 detik). 

3. Efisiensi Sumber Daya: Penggunaan model Machine Learning lokal tidak menyebabkan 

degradasi fisik pada perangkat. Hal ini dibuktikan dengan suhu operasional yang stabil 

pada 24,73°C (minimum self-heating) dan manajemen RAM yang konsisten tanpa adanya 

indikasi kegagalan sistem. 

4. Keunggulan Strategis: Secara keseluruhan, sistem TinyML memberikan keseimbangan 

optimal antara kecerdasan buatan, kecepatan respons, dan ketahanan perangkat keras. 

Untuk pengembangan penelitian selanjutnya, disarankan beberapa hal sebagai berikut: 

1. Pengembangan Dataset: Melatih model dengan variasi data anomali yang lebih kompleks 

(seperti kelembapan atau kualitas udara) agar sistem memiliki kecerdasan multivariate 

dalam mendeteksi perubahan lingkungan. 

2. Optimasi Konsumsi Daya: Mengintegrasikan fitur Deep Sleep pada ESP32 di sela-sela 

waktu inferensi TinyML untuk meninjau lebih lanjut efisiensi konsumsi daya pada 

penggunaan baterai jangka panjang. 
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3. Pengujian Skala Luas: Melakukan pengujian pada lingkungan luar ruangan (outdoor) 

dengan fluktuasi cuaca yang lebih ekstrem untuk menguji ketahanan model terhadap 

gangguan derau (noise) sensor yang lebih tinggi. 

4. Hibridasi Model: Mencoba arsitektur model TinyML yang lebih ringan (seperti Quantized 

Neural Network) untuk melihat kemungkinan reduksi penggunaan RAM di bawah 23 KB 

tanpa menurunkan nilai F1-Score 
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