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Abstrak Penelitian ini membandingkan performa sistem monitoring lingkungan berbasis Edge
Computing menggunakan Autoencoder Unsupervised Neural Network (TinyML) dengan metode
Heuristic pada perangkat ESP32. Kebaruan penelitian ini terletak pada evaluasi komprehensif
yang menyandingkan akurasi deteksi anomali dengan efisiensi sumber daya fisik (termal dan
memori) yang belum banyak dibahas secara simultan dalam studi sebelumnya. Hasil analisis
menunjukkan bahwa model TinyML memiliki superioritas kinerja dengan capaian F1-Score
sempurna (1,0), melampaui sistem Heuristic yang gagal memvalidasi data transisi. Dari sisi
operasional, TinyML menunjukkan efisiensi tinggi dengan stabilitas suhu kerja yang terjaga dan
latensi pengiriman data 24% lebih cepat. Meskipun terdapat penggunaan memori tambahan untuk
model, manajemen RAM terbukti tetap bersifat deterministik. Penelitian ini membuktikan bahwa
implementasi Unsupervised Learning di tingkat edge menghasilkan sistem deteksi yang lebih
cerdas dan responsif tanpa membebani kinerja fisik perangkat

Kata Kunci: TinyML, Autoencoder, Unsupervised Learning, Heuristic, Edge Computing,
ESP32.

Abstract. This study compares the performance of an environmental monitoring system based on
Edge Computing using an Autoencoder Unsupervised Neural Network (TinyML) against a
Heuristic method on an ESP32 device. The novelty of this research lies in a comprehensive
evaluation that simultaneously benchmarks anomaly detection accuracy against physical resource
efficiency (thermal and memory)—an aspect rarely addressed in prior studies. Analysis results
demonstrate that the TinyML model exhibits superior performance, achieving a perfect F1-Score
(1.0) and outperforming the Heuristic system, which failed to validly detect transitional data.
Operationally, TinyML demonstrates high efficiency, maintaining stable operating temperatures
and achieving a 24% reduction in data transmission latency. Despite the additional memory
overhead required for the model, RAM management proves to remain deterministic. This research
confirms that implementing Unsupervised Learning at the edge results in a more intelligent and
responsive detection system without compromising the device's physical performance.

Keywords: TinyML, Autoencoder, Unsupervised Learning, Heuristic, Edge Computing, ESP32

1. Pendahuluan

Dalam ekosistem Industri 4.0, pemantauan lingkungan secara real-time merupakan pilar
utama bagi pemeliharaan prediktif dan kontrol kualitas. Penggunaan sensor berbiaya rendah
seperti DHT11 yang terintegrasi dengan mikrokontroler ESP32 memungkinkan digitalisasi data
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suhu dan kelembaban langsung di tingkat edge. Implementasi ini secara signifikan meningkatkan
daya tanggap sistem serta mengurangi latensi jika dibandingkan dengan solusi berbasis cloud
tradisional (Barambones & Apifianiz, 2022). Namun ketergantungan pada infrastruktur cloud yang
masif seringkali memicu kendala berupa konsumsi bandwidth yang tidak efisien dan risiko
keamanan data.(Laroui et al., 2021)

Untuk mengatasi kendala infrastruktur terpusat, paradigma Edge Computing diadopsi guna
memproses dan menganalisis data secara lokal. Pendekatan ini meminimalkan kebutuhan
komunikasi cloud dan mengoptimalkan penggunaan sumber daya perangkat, yang pada gilirannya
mendukung skalabilitas arsitektur industri (Magadan F J et al., 2023), (Danladi & Baykara, 2022).
Lebih lanjut, implementasi kecerdasan buatan pada perangkat terbatas sumber daya, atau Tiny
Machine Learning (TinyML), memfasilitasi pengambilan keputusan independen di tingkat edge
(Alajlan & lbrahim, 2022). TinyML mengatasi keterbatasan komputasi tepi tradisional melalui
teknik seperti kuantisasi, yang mengoptimalkan ukuran model agar sesuai dengan kapasitas RAM
mikrokontroler sekaligus menjaga privasi data (Immonen, 2022).

Autoencoder (AE) telah diidentifikasi sebagai instrumen yang kuat untuk deteksi anomali
tanpa pengawasan (unsupervised). Prinsip kerja model ini adalah memetakan input ke ruang laten
berdimensi rendah dan kemudian merekonstruksinya kembali ke bentuk asli. Dalam proses ini,
kesalahan rekonstruksi atau Mean Squared Error (MSE) berfungsi sebagai metrik utama; nilai
kesalahan yang tinggi mengindikasikan adanya penyimpangan pola atau anomali (Bouman &
Heskes, 2024), (Chikezie et al., 2025).

Berbagai penelitian terdahulu telah mengeksplorasi efektivitas arsitektur ini pada data sensor
(Merrill, 2020) menunjukkan bahwa AE mampu mengekstraksi fitur kompleks pada data yang
berfluktuasi. Pengembangan lebih lanjut melibatkan penggunaan Variational Autoencoders
(VAE) untuk menangkap ketidakpastian data secara lebih dinamis. Selain itu, teknik regularisasi
pada ruang laten mulai diterapkan untuk mencegah model mempelajari pola anomali, yang krusial
untuk menjaga akurasi deteksi di perangkat edge (Choi et al., 2023). Studi lain menegaskan bahwa
optimasi neural network pada mikrokontroler komoditas dapat mencapai performa tinggi dengan
beban komputasi yang tetap efisien (Sudharsan et al., 2021).

Meskipun metode deteksi telah berkembang, terdapat kesenjangan teknis antara metode
heuristik tradisional dan pendekatan berbasis kecerdasan buatan. Metode heuristik berbasis
ambang batas statis (threshold) sering kali gagal mendeteksi anomali kontekstual yang halus—
situasi di mana nilai data masih berada dalam rentang normal tetapi polanya menunjukkan
ketidakteraturan yang mencurigakan (Danladi & Baykara, 2022) Sebaliknya, adopsi TinyML
menawarkan akurasi berbasis pola yang lebih tinggi namun sering dianggap memiliki beban
memori yang terlalu berat bagi perangkat mikrokontroler (Immonen, 2022).

Literatur saat ini banyak berfokus pada pengembangan model ML secara terpisah, namun
masih sangat sedikit yang memberikan perbandingan sistematis (head-to-head) mengenai biaya
sumber daya (resource cost) antara logika heuristik dan TinyML pada perangkat ESP32 (Soro,
2020). Selain itu, minimnya penelitian yang membahas deteksi anomali pada data sensor DHT11
yang sangat fluktuatif menjadi celah kritis yang perlu diisi. Belum ditemukan formula yang secara
sistematis membandingkan rasio peningkatan akurasi terhadap penggunaan memori pada
perangkat dengan keterbatasan sumber daya.

Penelitian ini hadir untuk mengisi kesenjangan tersebut dengan mengusulkan implementasi
model Autoencoder berbasis TinyML yang dioptimalkan melalui teknik kuantisasi. Model ini
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dirancang untuk mempelajari pola distribusi data normal secara mandiri dan dikonversi ke format
TensorFlow Lite for Microcontrollers agar kompatibel dengan memori ESP32 yang terbatas. Hal
ini memungkinkan evaluasi langsung terhadap efektivitas model Al dibandingkan metode
konvensional dalam skenario industri nyata. Tujuan utama penelitian ini adalah melakukan
kuantifikasi secara empiris terhadap efektivitas dan efisiensi sumber daya antara pendekatan
heuristik dan TinyML. Kontribusi utama dari penelitian ini adalah penyediaan kerangka kerja
benchmarking komprehensif yang membuktikan bahwa TinyML merupakan solusi berkelanjutan
untuk menghadirkan kecerdasan tinggi pada mikrokontroler tanpa mengorbankan stabilitas fisik
perangkat. Sebagai pembeda utama dari studi terdahulu, penelitian ini secara spesifik mengisi
celah literatur (research gap) melalui analisis komparatif langsung antara validitas metode
heuristik (aturan baku) dan adaptabilitas TinyML yang dieksekusi sepenuhnya pada arsitektur
perangkat keras ESP32

2. Metode

Penelitian ini menerapkan metodologi eksperimental dengan mengintegrasikan arsitektur
Autoencoder (AE) sebagai model TinyML berbasis unsupervised neural network yang dijalankan
sepenuhnya pada lingkungan Edge Computing (Alajlan & Ibrahim, 2022). Pemilihan pendekatan
TinyML ini didorong oleh kebutuhan akan sistem deteksi anomali yang efisien pada
mikrokontroler ESP32 dengan sumber daya terbatas tanpa ketergantungan pada dataset berlabel
yang besar (Immonen, 2022) Sebaliknya, logika heuristik berbasis ambang batas statis digunakan
sebagai baseline Non-TinyML untuk mengevaluasi efektivitas relatif terhadap sistem loT
konvensional (Magadan F J et al., 2023).

Proses penelitian dimulai dengan pengambilan data suhu dan kelembaban dari sensor
DHT11, diikuti dengan pelatihan model AE secara offline untuk mempelajari pola distribusi data
normal. Untuk memastikan model TinyML dapat berjalan secara efisien pada perangkat dengan
RAM terbatas, diterapkan teknik kuantisasi yang memetakan nilai floating-point ke format presisi
lebih rendah sebelum dikonversi ke format TensorFlow Lite for Microcontrollers. Penggunaan
paradigma Edge Computing dalam eksperimen ini memungkinkan proses identifikasi anomali
dilakukan secara real-time, mandiri, dan responsif tanpa ketergantungan pada konektivitas cloud.
Melalui perbandingan head-to-head ini, penelitian bertujuan mengukur secara empiris
peningkatan akurasi deteksi pola pada sistem TinyML dibandingkan dengan keterbatasan logika
kaku pada sistem Non-TinyML. Dibawah ini dapat dilihat diagram alir Penelitian:
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Gambar 1. Diagram alir Tahapan Penelitian

Tahap I: Implementasi Baseline (Heuristic)

Penelitian dimulai dengan inisialisasi sistem untuk menjalankan siklus monitoring awal.
Menggunakan ESP32, dimana ESP32 melakukan akuisisi data fisik melalui sensor DHT11. Dalam
ekosistem Industri 4.0, pemantauan lingkungan secara real-time merupakan pilar utama bagi
pemeliharaan prediktif dan kontrol kualitas. Pemilihan sensor DHT11 dalam penelitian ini
didasarkan pada karakteristiknya yang menawarkan keseimbangan optimal antara efisiensi biaya
dan kemudahan integrasi, menjadikannya representasi ideal untuk skenario penyebaran node
sensor massal (massive deployment) pada industri dengan anggaran terbatas. Data tersebut
kemudian diproses menggunakan logika heuristik melalui titik keputusan (decision point) untuk
mengevaluasi apakah nilai suhu (T) atau kelembaban (H) melewati ambang batas statis
(Threshold) yang ditentukan. Hasil pembacaan dan status awal ini kemudian dikirimkan ke cloud
platform ThingSpeak sebagai dataset pembanding.

Tahap I1: Pengembangan Model dan Kuantisasi

Dataset yang telah terkumpul di unduh untuk melalui proses pelatihan (training)
menggunakan arsitektur Autoencoder di lingkungan Google Colab. Proses ini melibatkan
optimalisasi model agar sesuai dengan spesifikasi Edge Computing melalui teknik kuantisasi.
Setelah model mencapai performa optimal, dilakukan transformasi format menjadi file header (.h)
agar dapat ditanamkan ke dalam memori mikrokontroler ESP32.

Tahap I11: Implementasi TinyML dan Inferensi Edge
Pada tahap ini, model yang telah dikonversi dimuat ke dalam perangkat untuk memulai
proses Inference. Berbeda dengan tahap pertama, sistem kini bekerja dengan menghitung nilai
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Reconstruction Error (RE) yang didefinisikan melalui rumus Mean Squared Error (MSE)
(Bouman & Heskes, 2024)(Chikezie et al., 2025):

1 .
MSE = — ¥ (i = X'D)% (1)

Di mana x adalah data input sensor dan x" adalah data hasil rekonstruksi model. Keputusan
mengenai status anomali ditentukan melalui perbandingan antara nilai Reconstruction Error
dengan ambang batas dinamis yang telah dipelajari model. Hasil analisis yang mencakup enam
field data kemudian dikirimkan kembali ke ThingSpeak.

Tahap IV: Analisis Statistik dan Validasi Akhir

Tahap akhir melibatkan penarikan seluruh dataset untuk dilakukan evaluasi mendalam.
Selain menggunakan Confusion Matrix untuk menghitung akurasi, dilakukan pula uji Mann-
Whitney U untuk menganalisis perbedaan penggunaan sumber daya (RAM) (Dhyani & Butola,
2025). Rumus uji statistik yang digunakan adalah:

ni(ni+1)
2

U=nln2+

Di mana n adalah jumlah sampel dan R adalah jumlah peringkat. Tahap validasi akhir
menentukan apakah solusi TinyML memberikan performa yang lebih baik berdasarkan metrik F1-
Score. Jika hasil evaluasi belum memenuhi kriteria, maka alur penelitian akan kembali ke Tahap
Il untuk dilakukan penyesuaian parameter pelatihan.

Tahap V: Analisis Statistik, Termal, dan Validasi Akhir
Tahap akhir melibatkan penarikan seluruh dataset dari cloud untuk dilakukan evaluasi
komprehensif melalui tiga parameter utama:

1. Analisis Self-Heating dan Distribusi Termal:
Untuk mengevaluasi dampak beban kerja komputasi Edge Computing terhadap suhu
internal perangkat, dilakukan analisis distribusi suhu menggunakan metode Kernel Density
Estimation (KDE). Hal ini bertujuan untuk memantau fenomena self-heating pada ESP32
saat menjalankan proses Inference yang intensif. Secara matematis, stabilitas suhu
dievaluasi dengan membandingkan varians () distribusi suhu antara sistem baseline dan
TinyML untuk memastikan perangkat bekerja dalam batas suhu operasional yang aman.

2. Analisis Latency dan Throughput:

Efisiensi waktu respon sistem diukur melalui durasi pengiriman data end-to-end. Latensi
dihitung berdasarkan selisih waktu antara stempel waktu (timestamp) pengumpulan data
sensor hingga data berhasil diterima oleh gateway (Behnke & Austad, 2024). Throughput
sistem dievaluasi untuk memastikan bahwa durasi Inference (rata-rata 16 ms) tidak
menyebabkan penundaan (delay) pada interval pengiriman data, sebuah pendekatan yang
krusial dalam menjaga efisiensi komputasi edge (Ficili et al., 2025). Hal ini dilakukan
untuk menjamin kapabilitas real-time sistem deteksi saat data ditransmisikan ke platform
ThingSpeak.

3. Analisis Respon Deteksi Intelligence:
Validasi kecerdasan model dilakukan dengan mengamati respon sistem terhadap
perubahan data sensor secara dinamis (fluktuasi suhu ekstrim). Performa deteksi diukur
menggunakan metrik Confusion Matrix untuk menghasilkan nilai Precision, Recall, dan
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F1-Score. Kemampuan model dalam merespon perubahan data dievaluasi melalui nilai
Reconstruction Error (RE); model dianggap cerdas jika mampu menghasilkan lonjakan
nilai (RE) yang signifikan secara instan saat terjadi deviasi pola data (anomali)(Dhyani &
Butola, 2025) , yang kemudian divalidasi dengan rumus:

Precision x Recall

F1 = 2 x D R e 3)

Precision +Recall

Tahap validasi akhir menentukan apakah solusi TinyML memberikan performa yang lebih
baik berdasarkan seluruh parameter di atas. Jika hasil evaluasi menunjukkan ketidakstabilan suhu
(overheating) atau kegagalan respon deteksi, maka alur penelitian akan kembali ke Tahap Il untuk
optimasi model lebih lanjut.

3. Hasil dan Pembahasan

Bagian ini memaparkan bukti empiris bahwa implementasi TinyML Autoencoder pada
ESP32 menawarkan superioritas dalam sensitivitas deteksi anomali dibandingkan logika heuristik,
dengan tetap mempertahankan efisiensi sumber daya yang kritis. Hasil pengujian menunjukkan
stabilitas yang konsisten pada konsumsi memori dan profil termal, serta memastikan bahwa
integrasi kecerdasan buatan tidak mengganggu latensi transmisi data secara real-time. Temuan ini
diperkuat melalui validasi statistik yang mengonfirmasi keandalan sistem dalam skenario
operasional dengan keterbatasan daya.

3.1 Hasil dan Analisis Kinerja Sistem Baseline/Heuristic
Rangkaian yang diterapkan pada penelitian ini dirancang menggunakan aplikasi online
https://www.circuito.io dengan hasil seperti gambar dibawah ini:

25/12/2025 10:08

Gambar 2. Rancangan Rangkaian ESP32 dan sensor DHT11 dan Penerapannya

Board ESP32 di integrasikan dengan Cloud IoT Platform Thingspeak, dengan Chanel ID :
3194325, dan APl Key : 6GUSIGJIRWSYM2IU. Data real time diambil berdasarkan suhu dan
kelembaban normal Kota Payakumbuh, dengan rentang 18°C atau di atas 34°C, dan sengaja
rentang pada Heuristic baseline dterapkan 12°C atau di atas 35°C, mengingat jika terjadi lonjakan
atau penurunan suhu drastic, sedangkan untuk kelembaban diambil rentang 30% - 95%

Sedangkan untuk penerapan model TinyML pada Autoencoder yang neparkan Unsupervised
Neural Network dilmplementasi metode Min-Max Scaling pada sistem TinyML ini menggunakan
dua array referensi, yaitu minv dan maxv, untuk menormalisasi variabel masukan ke dalam rentang
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yang seragam. Berdasarkan nilai yang ditetapkan, proses penyekalaan dilakukan secara spesifik
pada tiap indeks: indeks ke-O mengatur parameter suhu dalam rentang 15.0 hingga 50.0, indeks
ke-1 memetakan kelembapan antara 20.0 hingga 90.0, sedangkan indeks ke-2 mencakup nilai 0.0
hingga 300.0 yang kemungkinan merepresentasikan durasi proses atau metrik sensor lainnya.
Selanjutnya, indeks ke-3 menangani nilai magnitudo besar antara 80000.0 hingga 200000.0 yang
merepresentasikan penggunaan memori (Free Heap), dan indeks ke-4 berfungsi sebagai
penskalaan status biner atau variabel indikator dalam rentang 0.0 hingga 1.0.

Pada penelitian ini berikan perlakuan suhu dengan sengaja dinaikkan menggunakan pemanas
yang didekatkan dengan sensor DHT11 dan turunkan dengan menggunakan pendingin freezer,
untuk mendeteksi sesitifitas kinerja borad ESP32. Dibawabh ini dapat dilihat hasil Tampilan kinerja
ESP32 Non TinyML dan ESP32 dengan TinyML pada private view thingspeak.
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Gambar 3. Hasil data ESP32 Heuristic (Non TinyML) dan ESP32 dengan model Autoencoder
(TinyML) pada Cloud 10T Platform Thingspeaks

Data yang dikumpulkan melalui platform ThingSpeak diekstraksi dalam format Comma-
Separated Values (CSV) untuk diproses lebih lanjut. Tahap pengolahan dan analisis data dilakukan
menggunakan lingkungan Google Colab, yang kemudian menghasilkan visualisasi perbandingan
kinerja sebagaimana disajikan pada grafik dibawah ini :
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Gambar 5. Hasil deteksi dengan model Autoencoder (TinyML)
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Analisis komparatif antara data dari Grafik pada Gambar 3.2 dan 3.3 menunjukkan
perbedaan fundamental dalam mekanisme deteksi anomali antara sistem berbasis ambang batas
konvensional dengan sistem berbasis kecerdasan buatan di tingkat edge. Pada grafik Non-TinyML,
sistem beroperasi secara normal dengan nilai status yang konstan di angka 0, karena fluktuasi suhu
stabil di kisaran 24.8°C dan tidak mampu mengenali penyimpangan situasional selama data belum
melampaui ambang batas statis 35°C. Sebaliknya, grafik TinyML menunjukkan kapabilitas
deteksi yang lebih responsif dan cerdas, di mana variabel field6 secara dinamis berubah menjadi
angka 1 (anomali) saat model jaringan saraf tiruan mendeteksi pola suhu yang tidak wajar, seperti
pada lonjakan hingga 27.7°C. Sementara metode statistik seperti Z-Score pada sistem
konvensional memerlukan pemrosesan batch pasca-data dikumpulkan untuk mengidentifikasi
outlier, sistem TinyML pada perangkat ESP32 mampu melakukan inferensi secara real-time untuk
mengenali anomali berdasarkan konteks pola yang telah dipelajari, bukan sekadar berdasarkan
batasan angka numerik semata. Tabel. 1 dibawah ini dapat menjelaskan perbedaan kenirja anatara
dua perlakuan diatas.

Tabel 1. Perbandingan Sistem Heuristic vs Autoencoder (Non TinyML dengan TinyML)

Perlgglr;[g?ni}jan Sistem Non-TinyML (Banding) Sistem TinyML (Inferensi Edge)
Metode Deteksi Ambang Batas Statis (Hardcoded Model Jaringan Saraf Tiruan
Threshold) (Neural Network)
Logika Operasional if (suhu > 35.0) Pengenalan Pola (Pattern
Recognition)
Status Field 6 Konstan 0 (Selalu dianggap Dinamis 0 atau 1 (Deteksi cerdas)
normal)
Rentang Suhu Sangat stabil (~24.7°C - 24.9°C)  Lebih variatif (~24.7°C - 27.7°C)
Terukur
Respons terhadap Mengabaikan lonjakan selama di  Menandai suhu 27°C sebagai
Pola bawah 35°C anomali situasional
Ketergantungan Tinggi (Analisis statistik Rendah (Keputusan diambil
Cloud dilakukan di luar) langsung di ESP32)
Akurasi Rendah (Hanya melihat angka Tinggi (Melihat perilaku data
Kontekstual mutlak) terhadap waktu)
Deteksi Z-Score Memerlukan data historis (Batch) Berjalan secara Real-time (Per poin
data)

3.2 Perbandingan Efisiensi Memori

Analisis ketersediaan memori dinamis (Free Heap) menunjukkan perbedaan alokasi sumber
daya yang signifikan namun konsisten antara kedua sistem. Pada sistem Non-TinyML, rata-rata
memori bebas berada di angka 237.221 Bytes. Angka ini mencerminkan beban kerja minimal
karena perangkat hanya melakukan pembacaan sensor dan pengiriman data tanpa proses
komputasi berat. Sementara itu pada Gambar 6, pada sistem TinyML, rata-rata memori bebas
menurun menjadi 213.862 Bytes. Selisih penggunaan memori sebesar kurang lebih 23.358 Bytes
(sekitar 23 KB) ini merupakan "investasi” memori yang digunakan untuk memuat arsitektur model
Neural Network (bobot dan bias) serta menyediakan tensor arena untuk proses inferensi.
Meskipun kapasitas RAM yang tersisa lebih sedikit, distribusi memori pada sistem TinyML tetap
terjaga dalam rentang yang stabil (min: 211.100 B, max: 216.240 B). Hal ini mengindikasikan
bahwa model telah teroptimasi dengan baik untuk berjalan di atas perangkat ESP32 tanpa
menyebabkan risiko memory overflow. Data ini membuktikan bahwa implementasi TinyML di
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perangkat ESP32 hanya membutuhkan pengorbanan sekitar 10% dari total RAM yang tersedia
untuk memberikan kemampuan deteksi anomali yang cerdas. Rasio ini tergolong sangat efisien
untuk sistem embedded.

237221 8

213862 B

200000

150000

100000

Rata-rata Free RAM (Bytes)

50000

]

Nan-TinyML TinyML

Gambar 6. Perbandingan Rata Rata Free RAM Heuristic vs Autoencoder Non TinyML
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Gambar 7. Hasil perbandingan distribusi memori terhadap free RAM Heuristic vs Autoencoder
(Non TinyML dengan TinyML)

Bukti keandalan sistem dalam jangka panjang juga terlihat pada grafik Time Series Gambar
8. Kedua sistem menunjukkan garis tren horizontal yang stabil sepanjang lebih dari 4.000 sampel
indeks. Tidak adanya tren penurunan memori secara bertahap (step-down) membuktikan bahwa
sistem bebas dari kebocoran memori (memory leakage). Stabilitas ini sangat krusial bagi aplikasi
I0T industri yang menuntut uptime tinggi tanpa perlu reboot akibat fragmentasi memori.
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Gambar 8. Perbandingan Stabilitas memory (time series) Heuristic vs Autoencoder (Non
TinyML dengan TinyML)
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Untuk memvalidasi perbedaan antara Non TinyML dengan TinyML ini, dilakukan pengujian

Mann-Whitney U yang menghasilkan nilai p < 0,001, dari analisa formula dibawah ini:

Tabel 2. Data nilai free RAM Non TinyML dan TinyML

Sampel Non-TinyML (nl) TinyML (n2)
1-10 237220, 237225, 237218, 237230, 213860, 213865, 213858, 213870,
237215, 237222, 237228, 237219, 213855, 213862, 213868, 213859,
237224, 237221 213864, 213861
a. Jumlah rank (R)

e.

R1 (Non TinyML = 11+12+13+14+15+16+17+18+19+20 = 155
R2 (TinyML) = 1+2+3+4+5+6+7+8+9+10 = 55
Menghitung U dengan rumus (2)
nl(ni+ 1)

R1
2

U=nln2+

U = (10)(10) +

U=100+55-155=0

Menghitung Z-Score: Untuk sampel n > 8, kita menggunakan pendekatan distribusi

1n2 100
normal.mU = % =—=50

— 155

10(11)
2

Standar deviasi (¢U)aU = \/”1"2("11;”2“) = [220 = V175 ~ 13,23

Maka Z-Score (2)= = U::U = fg_;’g ~ —3,78

Hasil pengujian menunjukkan nilai U = 0 dengan Z = -3,78, yang menghasilkan nilai

signifikansi p < 0,001. Statistik ini mengonfirmasi bahwa penambahan model Autoencoder
memberikan beban memori yang berbeda nyata dibandingkan sistem heuristik, namun tetap berada
dalam batas toleransi aman.

Rangkuman lengkap perbandingan kinerja memori, parameter statistik, dan efisiensi sumber

daya antara kedua metode disajikan dalam Tabel 3 berikut:

Tabel 3. Analisis komparatif efisiensi Memory Heuristic vs Autoencoder (Non TinyML
dengan TinyML)

Parameter Sistem Non- Sistem TinyML Selisih / Keterangan /

Evaluasi TinyML (Autoencoder) Overhead Interpretasi
(Heuristic)

Rata-rata Free ~ $237.221% Bytes $213.863% Bytes ~ $23.358% Signifikan secara

RAM Bytes statistik ($p <

0,001%)

Rentang $236.820% - $211.100% - - Distribusi stabil

Memori (Min -  $239.344$ B $216.240% B pada kedua sistem

Max)
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Konsumsi 0 KB (Firmware ~23 KB (Model + +23 KB Alokasi untuk

Model Dasar) Engine) Tensor Arena

(Estimasi)

Overhead RAM 0% (Baseline) 9,84% 9,84% Rasio efisien untuk

(%) ESP32

Stabilitas Stack 25 Bytes 25 Bytes 0 Sangat Stabil
(Identik)

Indikasi Tidak Ada Tidak Ada - Garis tren linear

Memory Leak (horizontal)

3.3 Karakteristik Operasional Edge Computing (iNference TinyML)

Pada tahap ini didiskusikan tentang temuan dari hasil penelitian ini yaitu kondisi pada
perilaku fisik dan kecepatan perangkat saat menjalankan tugas kecerdasan buatan secara local.
Selain itu juga membahas stabilitas suhu operasional ESP32. Meskipun melakukan komputasi
berat, distribusi suhu tetap terpusat pada angka efisien (24,73°C) juga dideskripsikan Latency dan
Throughput data guna mengevaluasi interval pengiriman data ke ThingSpeak, untuk membuktikan
bahwa pemrosesan lokal (Edge Computing) justru menghasilkan transmisi yang lebih stabil dan
cepat.

1. Analisis Self-Heating (Efisiensi Termal)

Dari data yang diperoleh ditemukan bahwa karakteristik fisik perangkat menunjukkan
efisiensi termal yang luar biasa melalui pengamatan fenomena Self-Heating selama proses
komputasi berlangsung. Meskipun ESP32 memikul beban kerja yang lebih berat untuk
mengeksekusi algoritma Neural Network secara kontinu, stabilitas suhu operasional perangkat
tetap terjaga dengan sangat baik. Data menunjukkan bahwa distribusi suhu kerja tetap terpusat
secara konsisten pada angka efisien, yakni 24,73°C, tanpa adanya lonjakan panas yang signifikan
(thermal spiking). Hal ini membuktikan bahwa optimasi model TinyML pada tingkat edge tidak
hanya efisien secara perangkat lunak, tetapi juga secara fisik; penggunaan instruksi aritmatika
yang teroptimasi mampu meminimalkan disipasi daya pada inti prosesor. Stabilitas termal pada
suhu rendah ini sangat menguntungkan bagi reliabilitas jangka panjang perangkat 10T, karena
mengurangi risiko degradasi komponen akibat stres panas, sehingga menjamin akurasi sensor suhu
lingkungan tetap objektif tanpa terpengaruh oleh panas internal dari aktivitas central processing
unit (CPU). Dibawah ini dapat dilihat pada grafik dibawah ini

A. Analisis Self-Heating (Distribusi Suhu)

0.6 " Non-TinyML
‘ =3 TinyML

Kerapatan (Density)
=)
w

0.2 |
0.1 ‘ |

0.0 - -
10 20 30 40 50 60

Suhu (°C)

Gambar 9. Grafik Self Heating Heuristic vs Autoencoder (Non TinyML dengan TinyML)
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Untuk lebih jelasnya temuan diatas dapat dilihat pada Tabel 5. Hasil Perbandingan Self
Heating Non TinyML dan TinyML

Tabel 4. Hasil Perbandingan Self Heating Heuristic vs Autoencoder (Non TinyML dengan

TinyML)

Parameter Sistem Non- Sistem TinyML  Analisis Dampak

Termal TinyML (Banding) (Edge Al)

Suhu Operasional = 24,81°C +24,73°C TinyML menunjukkan

Rata-rata efisiensi termal yang lebih
baik (lebih dingin).

Stabilitas Fluktuatif (Rentang  Sangat Stabil Distribusi suhu TinyML

Distribusi Suhu Luas) (Terpusat) sangat konsisten pada satu
titik.

Beban Kerja Rendah (Hanya Tinggi (Inferensi  Meskipun beban komputasi

Prosesor Kirim Data) Model Al) naik, suhu tidak ikut naik
secara linear.

Gejala Panas Tidak Ada Tidak Ada Optimasi TinyML berhasil

Berlebih menekan disipasi daya pada
chip.

Integritas Sensor ~ Sangat Baik Sangat Baik Panas internal tidak
mengintervensi pembacaan
sensor eksternal.

Kondisi Termal Dingin / Idle Dingin / Efisien Penggunaan instruksi

Perangkat teroptimasi menjaga suhu

tetap rendah.

Data ini membuktikan hipotesis bahwa Edge Computing tidak berarti menguras energi
secara berlebihan atau merusak perangkat. Dengan suhu yang tetap dingin (24,7°C), sistem ini
sudah siap untuk dipasang secara permanen (long-term deployment) Analisis Latency dan
Throughput.

2. Analisis terhadap parameter Latensi dan Throughput

Selanjutnya parameter Latensi dan Throughput yang diperolen dari penelitian ini
menunjukkan keunggulan performansi yang signifikan pada arsitektur Edge Computing (TinyML)
dibandingkan dengan sistem monitoring konvensional. Berdasarkan tren temporal, sistem TinyML
menunjukkan konsistensi interval pengiriman data yang lebih rapat dan stabil, dengan rata-rata
latensi berada di kisaran 16 detik. Hal ini dimungkinkan karena proses inferensi dilakukan secara
lokal pada ESP32, sehingga perangkat dapat segera melakukan transmisi data ke ThingSpeak tepat
setelah keputusan diambil tanpa hambatan siklus tunggu yang panjang. Sebaliknya, sistem Non-
TinyML memperlihatkan latensi yang lebih tinggi dan fluktuatif dengan rata-rata 21 detik, yang
mengindikasikan ketidakstabilan Throughput akibat ketergantungan pada pemrosesan data
mentah. Secara distributif, grafik histogram mengonfirmasi bahwa TinyML memiliki kerapatan
data yang tinggi pada interval waktu yang sempit, sementara Non-TinyML tersebar lebih lebar.
Stabilitas latensi pada sistem TinyML ini sangat krusial dalam konteks deteksi dini anomali,
karena menjamin responsivitas sistem yang lebih cepat dan deterministik dalam melaporkan
kondisi kritis di lapangan. Untuk lebih jelasnya dapat dilihat dari Gambar dibawah ini
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Tren Latensi (Interval Pengiriman Data)
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Gambar 10. Tren Latency (pengiriman data) per detik Heuristic vs Autoencoder (Non
TinyML dengan TinyML)
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Gambar 11. Distribusi Latency (Kerapatan Throughput) Heuristic vs Autoencoder (Non
TinyML dengan TinyML)

Dibawah ini ditampilkan tabel perbandingan Latency dan throuhtpu antara Non TinyML
dan TinyML

Tabel 5. Perbandingan Latency dan throuhtput antara Heuristic vs Autoencoder (non
TinyML dengan TinyML)

Indikator Non-TinyML TinyML (Edge Interpretasi Teknis
Performa (Banding) Inference)

Rata-rata + 21,0 Detik + 16,0 Detik TinyML lebih cepat 23,8%
Latensi dalam transmisi.

Stabilitas (Std ~ Tinggi (Lebih Rendah (Lebih Pengiriman data TinyML
Dev) Variatif) Presisi) lebih terjadwal.

Kerapatan Tersebar/Renggang Terpusat/Rapat Volume data per menit lebih
Throughput tinggi pada TinyML.

Efisiensi Waktu Pasif (Menunggu) Aktif (Real-time) Inferensi lokal
menghilangkan waktu tunggu
cloud.

Reliabilitas Moderat Sangat Tinggi Meminimalkan risiko data
hilang akibat latensi.

Dari tabel diatas dapat diasumsikan bahwa Integrasi TinyML tidak hanya meningkatkan
"kecerdasan" sensor, tetapi juga mengoptimalkan jalur komunikasi data. Dengan latensi yang lebih
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rendah dan Throughput yang lebih stabil, sistem mampu memberikan peringatan bahaya (anomali)
ke platform ThingSpeak dengan jeda waktu yang minimal. Hal ini membuktikan bahwa beban
komputasi tambahan di tingkat edge tidak memperlambat kinerja, melainkan justru
mengefisiensikan siklus hidup data secara keseluruhan

3.4 Validasi Inteligensi dan Akurasi

Tahap validasi akhir ini membuktikan bahwa arsitektur Edge Computing berbasis TinyML
memiliki kecerdasan situasional yang jauh lebih tinggi dalam merespons perubahan data ekstrem
dibandingkan sistem heuristik (non-TinyML).

1. Respon Model terhadap Perubahan Data

Melalui analisis Reconstruction Error, model TinyML menunjukkan sensitivitas yang
presisi saat diberikan input suhu ekstrem seperti 5°C atau 50° C; lonjakan nilai error ini menjadi
pemicu otomatis bagi sistem untuk menetapkan status anomali secara real-time. Berbeda dengan
sistem konvensional yang hanya bergantung pada ambang batas kaku, TinyML memvalidasi data
berdasarkan profil distribusi normal yang telah dipelajari.

C. Validasi Deteksi Intelligence: Respon Model terhadap Perubahan Data

2000
Urutan Sampel (Time-Series)

Gambar 12. Validasi deteksi intelligence respon model

terhadap perubahan data

Perhitungan Reconstruction Error (MSE), hanya berlaku untuk TinyML karena sistem
heuristik tidak memiliki kemampuan rekonstruksi data. MSE dihitung saat model menerima input
suhu anomali (27,°C) dibandingkan dengan prediksi pola normalnya (24,8° C). lebihlanjut
perhitungan nya menggunakan MSE persamaan (1) berikut:

1 n
MSE = EZ(xi — x'0)?
i=1

Langkah kerja
a. Selisih antara (xi — x'i)?
27,7 -24’8 =2,92=8,41

8,41

b. MSE = - = 8,41

Analisis: Nilai MSE sebesar 8,41 ini jauh melampaui ambang batas internal model
(misal threshold = 1,0), sehingga sistem secara otomatis mengklasifikasikan data
tersebut sebagai Anomali.
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2. Evaluasi Confusion Matrix untuk Membandingkan akurasi deteksi anomali antara sistem Non
TinyML dan TinyML.

Perbandingan antara sistem Non TinyML dan TinyML pada Gambar 3.10 menunjukkan
perbedaan signifikan dalam presisi identifikasi anomali. Sistem Non TinyML bekerja secara kaku
menggunakan ambang batas statis; ia hanya akan memberikan label anomali jika data melewati
angka ekstrem secara absolut, sehingga sering kali gagal mendeteksi anomali halus (misalnya,
kenaikan suhu yang tidak wajar namun masih di bawah batas) dan menghasilkan False Negatives
yang tinggi. Sebaliknya, TinyML menggunakan pendekatan statistik mendalam melalui pola
Reconstruction Error. Dengan metrik F1-Score yang merupakan rata-rata harmonik antara
Precision (ketepatan) dan Recall (kepekaan) TinyML terbukti lebih unggul dalam
menyeimbangkan deteksi. TinyML mampu mengenali 'konteks' data; ia tidak hanya mendeteksi
angka tinggi, tetapi juga perubahan perilaku sensor yang mencurigakan secara real-time. Hasilnya,
TinyML memiliki nilai F1-Score yang mendekati sempurna (ideal), meminimalkan alarm palsu
(False Positives) sekaligus memastikan tidak ada kejadian kritis yang terlewatkan

Confusion Matrix: Non-TinyML (Heuristic) Confusion Matrix: TinyML (Autoencoder

)
3500
4000
0 3000 = 0 4646
2500 3000

-~ 2000

Actual
Actual

2000
- 1500

- 14 0 - 1000 - 0 14
- 1000

- 500

0 1 L] 1
Predicted Predicted

Gambar 13. Confusion Matrik perbandingan Heuristic vs Autoencoder (non TinyML dengan
TinyML)

Hasil evaluasi melalui Confusion Matrix menunjukkan tingkat True Positive yang lebih
tinggi, di mana TinyML berhasil membedakan fluktuasi suhu lingkungan yang wajar dengan
gangguan teknis sensor, sehingga secara signifikan mengurangi angka False Alarms. Validasi ini
menegaskan bahwa keputusan utama pada flowchart sistem berhasil mengeksekusi logika cerdas
di tingkat perangkat.

Dalam memvalidasi keunggulan TinyML, kita menggunakan tiga formula utama:yaitu Formula
(3,4, 5). Sistem ini gagal mendeteksi anomali karena ambang batasnya terlalu tinggi 35° C.

a. Sistem Heuristic (Non-TinyML)
1. Precision (Presisi) : Seberapa akurat model saat menebak anomali.

Precision = ——= 0
recision 0+0

2. Recall (Kepekaan): Seberapa banyak anomali asli yang berhasil ditangkap
0
Recall = 011 =0
b. Sistem TinyML
1. Precision (Presisi) : Seberapa akurat model saat menebak anomali.
Precision = 1—10 = 1,0 (100%)
2. Recall (Kepekaan): Seberapa banyak anomali asli yang berhasil ditangkap
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Recall = — = 1,0 (100%)

140
3. Perhitungan F1-Score (Final) persamaan (2)

Sistem Heuristic (Non TinyML)

F1—Score=2x 9x0 0
0+0
Sistem TinyML
1x1

2
= — = 0,
=5 = 10 (100%)

Untuk lebih jelasnya validasi pada system Heuristic vs Autoencoder (non TinyML dengan
TinyML) dapat dilhat pada tabel dibawah ini

F1—Score=2x

Tabel 6. Validasi pada system Heuristic VS Autoencoder (non TinyML dengan TinyML)

Metrik . Sistem Non TinyML Sistem TinyML Kesimpulan

Evaluasi

Akurasi Umum  Rendah (Kaku) Sangat Tinggi TinyML lebih cerdas.

(Adaptif)

Precision 0% 100% TinyML tidak memberikan
alarm palsu.

Recall 0% 100% TinyML tidak melewatkan
bahaya.

F1-Score 0.00 1.00 TinyML Sempurna.

Hasil perhitungan F1-Score menunjukkan perbedaan performa yang sangat kontras, di mana
sistem TinyML mencapai nilai sempurna (1.0) sementara sistem Heuristik berada pada nilai
terendah (0.0). Hal ini terjadi karena sistem heuristik hanya mampu mendeteksi anomali yang
bersifat ekstrem secara numerik (melewati 35°C, sehingga ia kehilangan kemampuan ‘intelegensi'
untuk mengenali suhu 27.7° C sebagai ancaman. Sebaliknya, TinyML melalui proses inferensi
lokal mampu memvalidasi bahwa suhu tersebut menyimpang dari profil normal, menghasilkan
nilai Recall yang tinggi tanpa mengorbankan Precision. Perbedaan skor ini membuktikan secara
matematis bahwa kecerdasan di tingkat edge mutlak diperlukan untuk sistem monitoring yang
Kritis
3.5 Analisis Konprehensif

Secara keseluruhan, rangkaian pengujian yang telah dilakukan membuktikan bahwa
integrasi TinyML pada arsitektur Edge Computing memberikan peningkatan performansi yang
signifikan dibandingkan dengan sistem monitoring konvensional (Non-TinyML). Dari aspek
inteligensi, sistem berhasil mencapai Accuracy Score sempurna (1,0) dan F1-Score (1,0), di mana
model mampu mengenali anomali melalui lonjakan Reconstruction Error (MSE) sebesar 8,41
pada deviasi suhu yang halus, sebuah kondisi yang gagal divalidasi oleh sistem heuristik. Secara
operasional, meskipun terdapat alokasi memori dinamis sebesar 23 KB untuk menjalankan model,
sistem justru menunjukkan stabilitas deterministik pada ketersediaan RAM dan efisiensi termal
yang sangat baik dengan suhu kerja konstan di angka 24,73°C. Keunggulan ini diperkuat oleh
optimalisasi jalur data yang mampu mereduksi latensi transmisi hingga 24% lebih cepat (16
detik) dibandingkan sistem pembanding. Dengan demikian, dapat disimpulkan bahwa
implementasi TinyML pada ESP32 bukan sekadar peningkatan fitur, melainkan sebuah
transformasi sistem yang menghasilkan perangkat monitoring yang jauh lebih cerdas, responsif,
dan reliabel untuk deteksi dini anomali di lingkungan penelitian. Terakhir, tabel berikut
menampilkan Ringkasan Parameter Keunggulan TinyML
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Tabel 7. Ringkasan Parameter Keunggulan Model Autoencoder (TinyML)

Dimensi Evaluasi  Indikator Keberhasilan Status Validasi
Validasi Inteligensi  Akurasi 100% & F1-Score 1.0 Sangat Baik
Efisiensi Memori ~ Konsumsi £23 KB (Tanpa Memory Leak) Stabil
Responsivitas Latensi 16 detik (Lebih cepat 5 detik) Optimal
Integritas Fisik Suhu Kerja 24,73°C (Low Self-Heating) ~ Aman

4. Kesimpulan

Penelitian ini menawarkan strategi konkret bagi industri untuk mengadopsi pemeliharaan
prediktif yang hemat biaya. Kemampuan menjalankan model Autoencoder pada perangkat
mikrokontroler terjangkau seperti ESP32 membuka peluang retrofitting mesin-mesin tua (legacy
equipment) menjadi aset cerdas tanpa ketergantungan pada infrastruktur cloud yang mabhal.
Pendekatan ini memungkinkan desentralisasi pengawasan kondisi mesin, pengurangan latensi
respons secara drastis, serta peningkatan privasi data, sehingga menjadi model solusi yang skalabel
untuk diterapkan mulai dari sektor industri kecil menengah (IKM) hingga manufaktur skala besar

Meskipun menawarkan efisiensi yang signifikan, penelitian ini memiliki sejumlah
keterbatasan yang perlu diantisipasi. Penggunaan sensor DHT11 membatasi resolusi pengukuran
dan respons waktu, sehingga hasil eksperimen ini lebih merepresentasikan skenario low-cost
monitoring dibandingkan presisi tingkat industri. Selain itu, pengujian yang dilakukan dalam
lingkungan terkontrol mungkin belum sepenuhnya menangkap kompleksitas gangguan fisik di
lapangan, serta adanya potensi bias data temporal di mana model yang dilatih pada durasi terbatas
mungkin memerlukan pelatihan ulang (retraining) untuk beradaptasi dengan variasi kondisi
lingkungan jangka panjang. Berdasarkan hasil analisis dan pembahasan yang telah dilakukan,
dapat ditarik beberapa kesimpulan utama:

1. Validasi Inteligensi: Implementasi TinyML (Tiny Machine Learning) berhasil
meningkatkan akurasi deteksi anomali secara signifikan. Melalui penghitungan Mean
Squared Error (MSE) sebesar 8,41, sistem mampu mengenali deviasi suhu halus (27,7°C
)sebagai anomali, sedangkan sistem konvensional gagal memvalidasi kondisi tersebut.

2. Performa Jaringan: Arsitektur Edge Computing terbukti memangkas jalur komunikasi data,
menghasilkan rata-rata latensi pengiriman ke platform ThingSpeak yang lebih rendah (16
detik) dibandingkan sistem Non-TinyML (21 detik).

3. Efisiensi Sumber Daya: Penggunaan model Machine Learning lokal tidak menyebabkan
degradasi fisik pada perangkat. Hal ini dibuktikan dengan suhu operasional yang stabil
pada 24,73°C (minimum self-heating) dan manajemen RAM yang konsisten tanpa adanya
indikasi kegagalan sistem.

4. Keunggulan Strategis: Secara keseluruhan, sistem TinyML memberikan keseimbangan
optimal antara kecerdasan buatan, kecepatan respons, dan ketahanan perangkat keras.

Untuk pengembangan penelitian selanjutnya, disarankan beberapa hal sebagai berikut:

1. Pengembangan Dataset: Melatih model dengan variasi data anomali yang lebih kompleks
(seperti kelembapan atau kualitas udara) agar sistem memiliki kecerdasan multivariate
dalam mendeteksi perubahan lingkungan.

2. Optimasi Konsumsi Daya: Mengintegrasikan fitur Deep Sleep pada ESP32 di sela-sela
waktu inferensi TinyML untuk meninjau lebih lanjut efisiensi konsumsi daya pada
penggunaan baterai jangka panjang.
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3. Pengujian Skala Luas: Melakukan pengujian pada lingkungan luar ruangan (outdoor)
dengan fluktuasi cuaca yang lebih ekstrem untuk menguji ketahanan model terhadap
gangguan derau (noise) sensor yang lebih tinggi.

4. Hibridasi Model: Mencoba arsitektur model TinyML yang lebih ringan (seperti Quantized
Neural Network) untuk melihat kemungkinan reduksi penggunaan RAM di bawah 23 KB
tanpa menurunkan nilai F1-Score
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