The Effect of Comparative Differences in Composition of Oil Palm Empty Fruit Bunches (OP-EFB) and HDPE Plastics : Physical and Mechanical Properties of Wood Plastic Composite (WPCs)
##plugins.themes.academic_pro.article.main##
Abstract
Wood Plastic Composite (WPCs) in this study is made from oil palm empty bunches (OP-EFB) which function as fillers and plastics that function as a matrix. This study aims to analyze the effect of the comparison of the composition of the empty fruit bunches of oil palm and HDPE plastic based on the physical and mechanical properties of WPCs. Comparison of the composition of OP-EFB and plastics used in this study were (60:40, 55:45, 50:50, 45:55, 40:60) with the addition of maleic anhydride (MAH) coupling agents and benzoyl peroxide (BPO) initiators. The board manufacturing process is carried out at a temperature of 170oC by pressing for 10 minutes. The results showed that the difference in the ratio of OP-EFB composition and HDPE plastic had a significant effect on the WPCs produced. The optimum ratio of OP-EFB fibers and HDPE plastics is the ratio of 45:55 with the density, water absorption, fracture strength (MOR), parallel surface compressive strength, surface perpendicular compression strength of 0.83 g / cm³, 0.21%, 180.86 kg / cm², 200.48 kg / cm², 47.13 kg / cm². The overall physical and mechanical properties of the WPC are in accordance with SNI 8154-2015 standards regarding wood-plastic composites.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Xu K, Du G, Wang S. Wood Plastic Composites: Their Properties and Applications. Engineered Wood Products for Construction, IntechOpen; 2022. https://doi.org/10.5772/intechopen.98918.
- Ayana KD, Ha C-S, Ali AY. Comprehensive overview of wood polymer composite: Formulation and technology, properties, interphase modification, and characterization. Sustainable Materials and Technologies 2024;40:e00983. https://doi.org/10.1016/j.susmat.2024.e00983.
- Wypych G. Selection of Impact Modifiers for Different End-Products. Handbook of Impact Modifiers 2022:193–223. https://doi.org/10.1016/B978-1-77467-004-0.50012-X.
- Badan Pusat Statistik Indonesia. Statistik Kelapa Sawit Indonesia 2020; 2021. https://www.bps.go.id/id/publication/2021/11/30/5a3d0448122bc6753c953533/statistik-kelapa-sawit-indonesia-2020.html
- Yusra AFI, Khalil HPSA, Hossain MdS, Davoudpour Y, Astimar AA, Zaidon A, et al. Characterization of Plant Nanofiber-Reinforced Epoxy Composites. Bioresources 2015;10. https://doi.org/10.15376/biores.10.4.8268-8280.
- Chiew YL, Shimada S. Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer – A case study of Malaysia. Biomass Bioenergy 2013;51:109–24. https://doi.org/10.1016/j.biombioe.2013.01.012.
- Mahardika M, Zakiyah A, Ulfa SM, Ilyas RA, Hassan MZ, Amelia D, et al. Recent Developments in Oil Palm Empty Fruit Bunch (OPEFB) Fiber Composite. Journal of Natural Fibers 2024;21. https://doi.org/10.1080/15440478.2024.2309915.
- Wulan PPDK, Yolanda Y. Mechanical property improvement of oil palm empty fruit bunch composites by hybridization using ramie fibers on epoxy–CNT matrices. Science and Engineering of Composite Materials 2023;30. https://doi.org/10.1515/secm-2022-0198.
- Januari AD, Agustina H. Palm Oil Empty Fruit Bunches and The Implementation of Zero Waste and Renewable Energy Technologies. IOP Conf Ser Earth Environ Sci 2022;1034:012004. https://doi.org/10.1088/1755-1315/1034/1/012004 https://iopscience.iop.org/article/10.1088/1755-1315/1034/1/012004/pdf
- Goel AK, Kurek J, Bartkowiak G, Samson DO, Makama EK, Sutar H, et al. New Advances in Materials Science and Engineering Vol. 1. Book Publisher International (a part of SCIENCEDOMAIN International); 2019. https://doi.org/10.9734/bpi/namse/v1.
- Pirma DS, Malrianti Y, Kasim A, Syukri D. Plastic Composite Boards from Oil Palm Empty Fruit Bunches (OP-EFB) with Variation of Pressing Temperature: Physical and Mechanical Properties. Journal of Fibers and Polymer Composites 2024;3:49–61. https://doi.org/10.55043/jfpc.v3i1.99.
- Sudarmadji S; BH dan S. Prosedur Analisis untuk Bahan Pangan dan Pertanian - Edisi ke IV. Yogyakarta: Liberty; 1997.
- De Datta. Principle and Practices of Rice Production, New York: John Willey and Sons,Inc; 1981, p. 618p.
- [BSN] Badan Standarisasi Nasional. SNI-03- 2105-2006.Papan Partikel., Jakarta: BSN; 2006.
- Kasim A. Proses Pembuatan Papan Partikel dari Tandan Kosong Sawit dengan Perekat Berbahan Baku Gambir. Paten P00200900127, 2009.
- Hidayah N, Wusko IU. Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo. Majalah Obat Tradisional 2020;25:154–60. https://doi.org/10.22146/mot.52715.
- Onat SM, Kelleci O. Particleboard Density and Surface Quality. International Conference on Contemporary Academic ResearchAt: Konya, Türkiye 2023. https://www.researchgate.net/publication/377413562_Particleboard_Density_and_Surface_Quality
- Idawati, Setyawati D, Nurhaida, Diba F. Kualitas Papan Komposit Batang Kelapa Sawit (Elaeis guineensis Jacq) dan Limbah Plastik Polipropilena Berbagai Variasi Rasio dan Penambahan Maleic Anhydrid. Jurnal Hutan Lestari 2014;2:546–54 https://doi.org/10.26418/jhl.v2i3.8542
- Sabharwal M, Secanell M. Understanding the effect of porosity and pore size distribution on low loading catalyst layers. Electrochim Acta 2022;419:140410. https://doi.org/10.1016/j.electacta.2022.140410.
- Lubis MJ, Risnasari I, Nuryawan A, Febrianto F. The Quality of Composite Board Made of Waste Oil Palm Stem (Elaeis guineensis Jacq) and Recycle Polyethylene (PE). Jurnal Teknologi Industri Pertanian 2010;19 https://journal.ipb.ac.id/index.php/jurnaltin/article/view/1096
- Wardani L, Massijaya MY, Hadi YS, Darwaman IW. Kualitas Papan Zephyr Pelepah Sawit dan Papan Komposit Komersial Sebagai Bahan Bangunan. Jurnal Teknik Sipil 2015;22:79–86. https://doi.org/10.5614/jts.2015.22.2.2
- Jones DRH, Ashby MF. Fracture Probability of Brittle Materials. Engineering Materials 1 2019:247–59. https://doi.org/10.1016/B978-0-08-102051-7.00015-4.
- Zinelis S, Brantley W. Structure/property relationships in orthodontic ceramics. Orthodontic Applications of Biomaterials: A Clinical Guide 2016:61–71. https://doi.org/10.1016/B978-0-08-100383-1.00003-5.
- Jeong GY. Fracture behavior of wood plastic composite (WPC). Louisiana State University and Agricultural and Mechanical College, 2005. https://doi.org/10.31390/gradschool_theses.3397.
- Friedrich D. Thermoplastic moulding of Wood-Polymer Composites (WPC): A review on physical and mechanical behaviour under hot-pressing technique. Compos Struct 2021;262:113649. https://doi.org/10.1016/j.compstruct.2021.113649.
- Mann GS, Singh LP, Kumar P, Singh S. Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials 2020;33:1145–71. https://doi.org/10.1177/0892705718816354.
- Kaymakci A, Ayrilmis N. Investigation of correlation between Brinell hardness and tensile strength of wood plastic composites. Compos B Eng 2014;58:582–5. https://doi.org/10.1016/j.compositesb.2013.11.009.