Optical and Electrical Properties of OPEFB Alkali Cellulose and PVA Composite

##plugins.themes.academic_pro.article.main##

Rima Fitria Adiati
Siti Nikmatin
Irmansyah
Nazwa Nuradilla Putri
Siti Altirana Anandiwa

Abstract

The Oil Palm Empty Fruit Bunch (OPEFB) is a byproduct of oil palm plantation and abundantly available in Indonesia. It is necessary to process the biomass waste into a more useful and higher value substances, such as semiconductor. This research aims to extract alpha-cellulose from OPEFB and process it into alkali cellulose - Polyvinyl Alcohol (PVA) composite for potential photodetector application. PVA acts as mechanical binding agent with 5%, 7.5%, and 10% concentration. Spectroscopy-based measurement is used to characterize the composite’s optical properties, while LCR meter is used to measure the electrical properties such as conductivity and capacitance.  Using UV-Vis spectroscopy with wavelength range of 400-900 nm, it is observed that alkali cellulose with 5% PVA has the highest optical absorbance. Using Kubelka-Munk equation and Tauc plot, the energy gap of the composite was calculated, with the lowest energy gap is 2,769 eV at 5% PVA. Using LCR meter between frequency of 5 Hz to 5 MHz, one can measure conductivity (specific conductance) of a material, where highest obtained electrical conductivity is 2,65×1004 S/cm, which satisfy typical value of semiconductor characteristic. Measurement of Impedance also shows that composite with 7.5% PVA has the highest impedance at lower frequencies, then decreases to almost zero at frequency higher than 5000 Hz. These results demonstrate the potential of alkali cellulose-PVA composite as semiconductor sensors. These findings suggest the potential for developing low-cost, sustainable electronic devices.

##plugins.themes.academic_pro.article.details##

Author Biographies

Siti Nikmatin, IPB University

Associate Professor

Department of Physics, IPB University

Bogor, Indonesia

Irmansyah, IPB University

Associate Professor

Department of Physics, IPB University

Bogor, Indonesia

Nazwa Nuradilla Putri, IPB University

Bachelor Student

Department of Physics, IPB University

Siti Altirana Anandiwa, IPB University

Bachelor Student

Department of Physics, IPB University

How to Cite
Adiati, R. F., Nikmatin, S., Irmansyah, Putri, N. N., & Anandiwa, S. A. (2024). Optical and Electrical Properties of OPEFB Alkali Cellulose and PVA Composite. Journal of Fibers and Polymer Composites, 3(2), 91–100. https://doi.org/10.55043/jfpc.v3i2.211

References

  1. BPDPKS. Laporan Tahunan 2020. 2020.
  2. Hidayah N, Wusko IU. Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo. Majalah Obat Tradisional 2020;25. https://doi.org/10.22146/mot.52715.
  3. Hanif H, Tri-Panji, Dimawarnita F, Artika IM. Pemurnian Alfa-Selulosa Dari Baglog Bekas Jamur Tiram Putih (Pleurotus ostreatus) Menggunakan NaOH dan Hidrolisis Sulfat. Menara Perkeb 2019;87:52–9.
  4. Ma H, Cheng Z, Li X, Li B, Fu Y, Jiang J. Advances and challenges of cellulose functional materials in sensors. Journal of Bioresources and Bioproducts 2023;8:15–32. https://doi.org/10.1016/j.jobab.2022.11.001.
  5. Fechter C, Fischer S, Reimann F, Brelid H, Heinze T. Influence of pulp characteristics on the properties of alkali cellulose. Cellulose 2020;27:7227–41. https://doi.org/10.1007/s10570-020-03151-4.
  6. Yokota S, Nishimoto A, Kondo T. Alkali-activation of cellulose nanofibrils to facilitate surface chemical modification under aqueous conditions. Journal of Wood Science 2022;68. https://doi.org/10.1186/s10086-022-02022-9.
  7. Irzaman, A M, H S, A I. Uji konduktivitas listrik dan dielektrik film tipis lithium tantalate yang didadah niobium pentaoksida menggunakan metode chemical solution deposition. Prosiding Seminar Nasional Fisika 2010:978–9.
  8. Annandarajah C, Langhorst A, Kiziltas A, Grewell D, Mielewski D, Montazami R. Hybrid cellulose-glass fiber composites for automotive applications. Materials 2019;12. https://doi.org/10.3390/ma12193189.
  9. Koga H, Nagashima K, Suematsu K, Takahashi T, Zhu L, Fukushima D, et al. Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design. ACS Nano 2022;16:8630–40. https://doi.org/10.1021/acsnano.1c10728.
  10. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A. Nanocellulose in Sensing and Biosensing. Chemistry of Materials 2017;29:5426–46. https://doi.org/10.1021/acs.chemmater.7b01170.
  11. Ma J, Pu H, He P, Zhao Q, Pan S, Wang Y, et al. Robust cellulose-carbon nanotube conductive fibers for electrical heating and humidity sensing. Cellulose 2021;28:7877–91. https://doi.org/10.1007/s10570-021-04026-y.
  12. Wang C, Li Y, Yu HY, Abdalkarim SYH, Zhou J, Yao J, et al. Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Appl Mater Interfaces 2021;13:40953–63. https://doi.org/10.1021/acsami.1c12012.
  13. Chen Z, Yan T, Pan Z. Review of flexible strain sensors based on cellulose composites for multi-faceted applications. Cellulose 2021;28:615–45. https://doi.org/10.1007/s10570-020-03543-6.
  14. Bencurova E, Shityakov S, Schaack D, Kaltdorf M, Sarukhanyan E, Hilgarth A, et al. Nanocellulose Composites as Smart Devices With Chassis, Light-Directed DNA Storage, Engineered Electronic Properties, and Chip Integration. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.869111.
  15. Kamel S, Khattab TA. Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors (Basel) 2020;10. https://doi.org/10.3390/BIOS10060067.
  16. Purwita CA, Sugesty S, Balai HR, Pulp B, Kertas D, Raya J. Characteristics of Commercial Acid Sulfite and Prehydrolysis Kraft Rayon Pulp Based on SNI 938:2017. Jurnal Standardisasi 2020;22.
  17. Wei W, Tian Z, Ji X, Wang Q, Chen J, Zhang G, et al. Severity factor & dissolving pulp. 2020;15.
  18. Makuła P, Pacia M, Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters 2018;9:6814–7. https://doi.org/10.1021/acs.jpclett.8b02892.
  19. Rejaiba O, Braña AF, Matoussi A. Series and parallel resistance effects on the C–V and G–V characteristics of Al / SiO 2 /Si structure. J Comput Electron 2016;15:831–8. https://doi.org/10.1007/s10825-016-0844-z.
  20. Khiar ASA, Arof AK. Conductivity studies of starch-based polymer electrolytes. Ionics (Kiel) 2010;16:123–9. https://doi.org/10.1007/s11581-009-0356-y.
  21. Kurniawan A, Irzaman, Yuliarto B, Fahmi MZ, Ferdiansjah. Application of barium strontium titanate (BST) as a light sensor on led lights. Ferroelectrics 2020;554:160–71. https://doi.org/10.1080/00150193.2019.1684758.
  22. Yakuphanoglu F, Okutan M, Zhuang Q, Han Z. The dielectric spectroscopy and surface morphology studies in a new conjugated polymer poly(benzobisoxazole-2,6-diylvinylene). Physica B Condens Matter 2005;365:13–9. https://doi.org/10.1016/j.physb.2005.04.035.
  23. Dinesh P, Renukappa NM, Siddaramaiah. Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics 2010;116:128–36. https://doi.org/10.1080/10584587.2010.503519.
  24. Torğut G, Gürler N. Enhanced impedance, electrical conductivity, dielectric properties for colloidal starch-g-poly (methyl methacrylate) supported with semiconductor cadmium sulfide. Polymer Bulletin 2024;81:8883–900. https://doi.org/10.1007/s00289-023-05125-5.