Optical and Electrical Properties of OPEFB Alkali Cellulose and PVA Composite
##plugins.themes.academic_pro.article.main##
Abstract
The Oil Palm Empty Fruit Bunch (OPEFB) is a byproduct of oil palm plantation and abundantly available in Indonesia. It is necessary to process the biomass waste into a more useful and higher value substances, such as semiconductor. This research aims to extract alpha-cellulose from OPEFB and process it into alkali cellulose - Polyvinyl Alcohol (PVA) composite for potential photodetector application. PVA acts as mechanical binding agent with 5%, 7.5%, and 10% concentration. Spectroscopy-based measurement is used to characterize the composite’s optical properties, while LCR meter is used to measure the electrical properties such as conductivity and capacitance. Using UV-Vis spectroscopy with wavelength range of 400-900 nm, it is observed that alkali cellulose with 5% PVA has the highest optical absorbance. Using Kubelka-Munk equation and Tauc plot, the energy gap of the composite was calculated, with the lowest energy gap is 2,769 eV at 5% PVA. Using LCR meter between frequency of 5 Hz to 5 MHz, one can measure conductivity (specific conductance) of a material, where highest obtained electrical conductivity is 2,65×1004 S/cm, which satisfy typical value of semiconductor characteristic. Measurement of Impedance also shows that composite with 7.5% PVA has the highest impedance at lower frequencies, then decreases to almost zero at frequency higher than 5000 Hz. These results demonstrate the potential of alkali cellulose-PVA composite as semiconductor sensors. These findings suggest the potential for developing low-cost, sustainable electronic devices.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- BPDPKS. Laporan Tahunan 2020. 2020.
- Hidayah N, Wusko IU. Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo. Majalah Obat Tradisional 2020;25. https://doi.org/10.22146/mot.52715.
- Hanif H, Tri-Panji, Dimawarnita F, Artika IM. Pemurnian Alfa-Selulosa Dari Baglog Bekas Jamur Tiram Putih (Pleurotus ostreatus) Menggunakan NaOH dan Hidrolisis Sulfat. Menara Perkeb 2019;87:52–9.
- Ma H, Cheng Z, Li X, Li B, Fu Y, Jiang J. Advances and challenges of cellulose functional materials in sensors. Journal of Bioresources and Bioproducts 2023;8:15–32. https://doi.org/10.1016/j.jobab.2022.11.001.
- Fechter C, Fischer S, Reimann F, Brelid H, Heinze T. Influence of pulp characteristics on the properties of alkali cellulose. Cellulose 2020;27:7227–41. https://doi.org/10.1007/s10570-020-03151-4.
- Yokota S, Nishimoto A, Kondo T. Alkali-activation of cellulose nanofibrils to facilitate surface chemical modification under aqueous conditions. Journal of Wood Science 2022;68. https://doi.org/10.1186/s10086-022-02022-9.
- Irzaman, A M, H S, A I. Uji konduktivitas listrik dan dielektrik film tipis lithium tantalate yang didadah niobium pentaoksida menggunakan metode chemical solution deposition. Prosiding Seminar Nasional Fisika 2010:978–9.
- Annandarajah C, Langhorst A, Kiziltas A, Grewell D, Mielewski D, Montazami R. Hybrid cellulose-glass fiber composites for automotive applications. Materials 2019;12. https://doi.org/10.3390/ma12193189.
- Koga H, Nagashima K, Suematsu K, Takahashi T, Zhu L, Fukushima D, et al. Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design. ACS Nano 2022;16:8630–40. https://doi.org/10.1021/acsnano.1c10728.
- Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A. Nanocellulose in Sensing and Biosensing. Chemistry of Materials 2017;29:5426–46. https://doi.org/10.1021/acs.chemmater.7b01170.
- Ma J, Pu H, He P, Zhao Q, Pan S, Wang Y, et al. Robust cellulose-carbon nanotube conductive fibers for electrical heating and humidity sensing. Cellulose 2021;28:7877–91. https://doi.org/10.1007/s10570-021-04026-y.
- Wang C, Li Y, Yu HY, Abdalkarim SYH, Zhou J, Yao J, et al. Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Appl Mater Interfaces 2021;13:40953–63. https://doi.org/10.1021/acsami.1c12012.
- Chen Z, Yan T, Pan Z. Review of flexible strain sensors based on cellulose composites for multi-faceted applications. Cellulose 2021;28:615–45. https://doi.org/10.1007/s10570-020-03543-6.
- Bencurova E, Shityakov S, Schaack D, Kaltdorf M, Sarukhanyan E, Hilgarth A, et al. Nanocellulose Composites as Smart Devices With Chassis, Light-Directed DNA Storage, Engineered Electronic Properties, and Chip Integration. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.869111.
- Kamel S, Khattab TA. Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors (Basel) 2020;10. https://doi.org/10.3390/BIOS10060067.
- Purwita CA, Sugesty S, Balai HR, Pulp B, Kertas D, Raya J. Characteristics of Commercial Acid Sulfite and Prehydrolysis Kraft Rayon Pulp Based on SNI 938:2017. Jurnal Standardisasi 2020;22.
- Wei W, Tian Z, Ji X, Wang Q, Chen J, Zhang G, et al. Severity factor & dissolving pulp. 2020;15.
- Makuła P, Pacia M, Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters 2018;9:6814–7. https://doi.org/10.1021/acs.jpclett.8b02892.
- Rejaiba O, Braña AF, Matoussi A. Series and parallel resistance effects on the C–V and G–V characteristics of Al / SiO 2 /Si structure. J Comput Electron 2016;15:831–8. https://doi.org/10.1007/s10825-016-0844-z.
- Khiar ASA, Arof AK. Conductivity studies of starch-based polymer electrolytes. Ionics (Kiel) 2010;16:123–9. https://doi.org/10.1007/s11581-009-0356-y.
- Kurniawan A, Irzaman, Yuliarto B, Fahmi MZ, Ferdiansjah. Application of barium strontium titanate (BST) as a light sensor on led lights. Ferroelectrics 2020;554:160–71. https://doi.org/10.1080/00150193.2019.1684758.
- Yakuphanoglu F, Okutan M, Zhuang Q, Han Z. The dielectric spectroscopy and surface morphology studies in a new conjugated polymer poly(benzobisoxazole-2,6-diylvinylene). Physica B Condens Matter 2005;365:13–9. https://doi.org/10.1016/j.physb.2005.04.035.
- Dinesh P, Renukappa NM, Siddaramaiah. Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics 2010;116:128–36. https://doi.org/10.1080/10584587.2010.503519.
- Torğut G, Gürler N. Enhanced impedance, electrical conductivity, dielectric properties for colloidal starch-g-poly (methyl methacrylate) supported with semiconductor cadmium sulfide. Polymer Bulletin 2024;81:8883–900. https://doi.org/10.1007/s00289-023-05125-5.