Variation of Tea Waste Addition on Bacterial Cellulose Production from Kombucha Fermented Sago Liquid Waste

##plugins.themes.academic_pro.article.main##

Fadla Binti Syarif
Deivy Andhika Permata
Ira Desri Rahmi

Abstract

Sago liquid waste contains high levels of carbohydrates and has potential as a fermentation medium for bacterial cellulose production. However, its nutritional content requires enhancement by supplementing it with tea waste to achieve optimal yields. This study investigated the effect of varying tea waste additions on the characteristics of bacterial cellulose produced from kombucha fermentation based on sago liquid waste. The research method used a completely randomized design with five treatments (2, 4, 6, 8, and 10 g of tea dregs) and three replications. The observed parameters included yield, thickness, moisture content, cellulose content, and Fourier Transform Infrared (FTIR) spectroscopy. The results showed that increasing tea waste levels significantly affected all parameters (p < 0.05). The best treatment (10 g) resulted in a yield of 18.21%, a thickness of 13.47 mm, a moisture content of 47.57%, and a cellulose content of 52.43%. FTIR spectral analysis confirmed the characteristic peaks of bacterial cellulose, indicating the presence of crystalline β-1,4-glucan structures. The identification of cellulose type I is significant because it represents the native crystalline form of bacterial cellulose, which is associated with high mechanical stability, strong hydrogen bonding, and potential suitability for biopolymer applications. This study demonstrates that tea waste is an effective nutrient supplement that enhances the quality and quantity of bacterial cellulose derived from kombucha fermentation of sago liquid waste.

##plugins.themes.academic_pro.article.details##

Author Biographies

Fadla Binti Syarif, Universitas Andalas

Department of Agricultural Industrial Technology

Deivy Andhika Permata, Universitas Andalas

Department of Agricultural Industrial Technology

Ira Desri Rahmi, Universitas Andalas

Department of Agricultural Industrial Technology

How to Cite
Syarif, F. B., Permata, D. A., & Rahmi, I. D. (2025). Variation of Tea Waste Addition on Bacterial Cellulose Production from Kombucha Fermented Sago Liquid Waste. Journal of Fibers and Polymer Composites, 4(2), 84–100. https://doi.org/10.55043/jfpc.v4i2.384

References

  1. Faria M, Mohammadkazemi F, Aguiar R, Cordeiro N. Agro-industrial byproducts as modification enhancers of the bacterial cellulose biofilm surface properties: An inverse chromatography approach. Ind Crops Prod 2022;177:114447. https://doi.org/10.1016/j.indcrop.2021.114447.
  2. Awadhiya A, Kumar D, Rathore K, Fatma B, Verma V. Synthesis and characterization of agarose–bacterial cellulose biodegradable composites. Polymer Bulletin 2017;74:2887–903. https://doi.org/10.1007/s00289-016-1872-3.
  3. Jang EJ, Padhan B, Patel M, Pandey JK, Xu B, Patel R. Antibacterial and biodegradable food packaging film from bacterial cellulose. Food Control 2023;153. https://doi.org/10.1016/j.foodcont.2023.109902.
  4. Ludwicka K, Kaczmarek M, Białkowska A. Bacterial nanocellulose—a biobased polymer for active and intelligent food packaging applications: Recent advances and developments. Polymers (Basel) 2020;12:1–23. https://doi.org/10.3390/polym12102209.
  5. Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. Kombucha: Production and Microbiological Research †. Foods 2022;11:1–18. https://doi.org/10.3390/foods11213456.
  6. Soares MG, de Lima M, Reolon Schmidt VC. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends Food Sci Technol 2021;110:539–50. https://doi.org/10.1016/j.tifs.2021.02.017.
  7. Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Tanasupawat S, et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology 2012;58:397–404. https://doi.org/10.2323/jgam.58.397.
  8. Wang Y, Ji B, Wu W, Wang R, Yang Z, Zhang D, et al. Hepatoprotective effects of kombucha tea: Identification of functional strains and quantification of functional components. J Sci Food Agric 2014;94:265–72. https://doi.org/10.1002/jsfa.6245.
  9. Kołaczkowska M, Siondalski P, Kowalik MM, Pęksa R, Długa A, Zając W, et al. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant. Materials Science and Engineering C 2019;97:302–12. https://doi.org/10.1016/j.msec.2018.12.016.
  10. Xu Q, Nie Q, Liu Z, Guo Q, Liu Z, Cai S. Review on the Formation Pathway of Kombucha Bacterial Cellulose and Its Application in Efficient Utilization of Tea Waste. Journal of Tea Science 2024;44:707–17. https://doi.org/10.13305/j.cnki.jts.2024.05.001.
  11. Nururrahmah. Pengolahan Ampas Sagu Menjadi Biogas Sebagai Sumber Energi Terbarukan Ramah Lingkungan. DISERTASI 2021:1–25.
  12. Syarif FB, Restuhadi F, Zalfiatri Y. Pemanfaatan Simbiosis Mikroalga Chlorella Sp dan Agrobost Untuk Menurunkan Kadar Polutan Limbah Cair Sagu. Sagu 2019;18:9–16. http://download.garuda.kemdikbud.go.id/article.php?article=2632251&val=24498&title=PEMANFAATAN%20SIMBIOSIS%20MIKROALGA%20Chlorella%20sp%20DAN%20AGROBOST%20UNTUK%20MENURUNKAN%20KADAR%20POLUTAN%20LIMBAH%20CAIR%20SAGU
  13. Yang L, Zhu X, Chen Y, Jun W. Enhanced bacterial cellulose production in Gluconacetobacter xylinus by overexpression of two genes (bscC and bcsD) and a modified static culture. Int J Biol Macromol 2024;260:129552. https://doi.org/10.1016/j.ijbiomac.2024.129552.
  14. Babu AS, Krishna CR, Raju S. Evaluation of tea waste or tea residue , orange peels and pigeon pea pods for proximate composition , fodder quality and digestibility parameters 2022. https://www.researchgate.net/profile/Sudheer-Arumbaka/publication/365542549_Evaluation_of_tea_waste_or_tea_residue_orange_peels_and_pigeon_pea_pods_for_proximate_composition_fodder_quality_and_digestibility_parameters/links/6378305e2f4bca7fd070fc3c/Evaluation-of-tea-waste-or-tea-residue-orange-peels-and-pigeon-pea-pods-for-proximate-composition-fodder-quality-and-digestibility-parameters.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
  15. Balcı-Torun F, Özdemir KS, Mavuş R, Torun M. Determination of cream formation conditions and its composition during production of concentrated tea extract from black tea manufacturing wastes. Gıda 2021;46:339–50. https://doi.org/10.15237/gida.GD20145.
  16. Vera-Guerrero D, Mendoza LM, Lara GB, Vallejo DL, Valenzuela-Cobos A, Domínguez-Brito L, et al. Sustainable kombucha production: A conceptual framework integrating life cycle assessment and circular economy principles. Trends Food Sci Technol 2025;159. https://doi.org/10.1016/j.tifs.2025.104996.
  17. Zhou DD, Saimaiti A, Luo M, Huang SY, Xiong RG, Shang A, et al. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022;11. https://doi.org/10.3390/antiox11010155.
  18. Yanti NA, Ahmad SW, Ambardini S, Muhiddin NH, Sulaiman LOI. Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste. Biosaintifika: Journal of Biology & Biology Education 2017;9:387. https://doi.org/10.15294/biosaintifika.v9i3.10241.
  19. Nurika I, Hidayat N, Anggraeni Y. Produksi Selulosa Menggunakan Kultur Kombucha Dari Limbah Cair Industri Tahu (Kajian Penambahan Sukrosa Dan Amonium Sulfat Serta Analisis Biaya Produksinya). Jurnal Teknologi Pertanian 2019;8:95–102. https://www.academia.edu/download/93756926/633.pdf
  20. Ummiyati A, Kustyawati ME, Satyajaya W. Kajian Nata De Ocha Sebagai Konsumsi Pangan: Efek Penambahan Gula Dan Lama Fermentasi Terhadap Karakteristik Nata De Ocha 2024;3:134–48. https://jurnal.fp.unila.ac.id/index.php/JAB/article/view/8961
  21. Balasubramanian P, Praharaj PT. Principal component analysis revealed the key influencing factors of kombucha bacterial cellulose yield and productivity. Bioresour Technol Rep 2023;23:101539. https://doi.org/10.1016/j.biteb.2023.101539.
  22. Sharma C, Bhardwaj NK. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. Int J Biol Macromol 2019;132:166–77. https://doi.org/10.1016/j.ijbiomac.2019.03.202.
  23. Goh WN, Rosma A, Kaur B, Fazilah A, Karim AA, Bhat R. Fermentation of black tea broth (kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. Int Food Res J 2012;19:109–17. http://ifrj.upm.edu.my/19%20(01)%202011/(15)IFRJ-2011-105%20Rajeev.pdf
  24. Ahmad SW, Yanti NA, Muhiddin NH. Pemanfaatan Limbah Cair Sagu untuk Memproduksi Selulosa Bakteri (Utilization of Sago Liquid Waste for Bacterial Cellulose Production). Biologi Indonesia 2019;15:33–9. https://jurnalbiologi.perbiol.or.id/storage/journal/9365828f-be90-4ae7-a0e3-f6dfb8174ffd/journal-21092020041205.pdf
  25. Hastuti M, Andriyani M, Wiedyastanto A, Gisyamadia DS, Margono. Pemanfaatan Ekstrak Kecambah Kacang Hijau Sebagai Sumber Nitrogen Alternatif Dalam Pembuatan Nata De Lerry. Prosiding SNST Ke-8 2017;m:1–5. https://publikasiilmiah.unwahas.ac.id/PROSIDING_SNST_FT/article/viewFile/1898/1951
  26. Yanti NA, Ahmad SW, Ramadhan LOAN, Jamili, Muzuni, Walhidayah T, et al. Properties and application of edible modified bacterial cellulose film based sago liquid waste as food packaging. Polymers (Basel) 2021;13. https://doi.org/10.3390/polym13203570.
  27. Laavanya D, Shirkole S, Balasubramanian P. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. J Clean Prod 2021;295:126454. https://doi.org/10.1016/j.jclepro.2021.126454.
  28. Akintunde MO, Adebayo-Tayo BC, Ishola MM, Zamani A, Horváth IS. Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains. Bioengineered 2022;13:10010–25. https://doi.org/10.1080/21655979.2022.2062970.
  29. Pradhan S, Prabhakar MR, Karthika Parvathy KR, Dey B, Jayaraman S, Behera B, et al. Metagenomic and physicochemical analysis of Kombucha beverage produced from tea waste. J Food Sci Technol 2023;60:1088–96. https://doi.org/10.1007/s13197-022-05476-3.
  30. Ramírez Tapias YA, Di Monte MV, Peltzer MA, Salvay AG. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chem 2022;372. https://doi.org/10.1016/j.foodchem.2021.131346.
  31. Morales D. Biological activities of kombucha beverages: The need of clinical evidence. Trends Food Sci Technol 2020;105:323–33. https://doi.org/10.1016/j.tifs.2020.09.025.
  32. Chaluvadi S, Hotchkiss AT, Smith B, McVaugh B, White AK, Guron GKP, et al. Key Kombucha Process Parameters for Optimal Bioactive Compounds and Flavor Quality. Fermentation 2024;10:1–15. https://doi.org/10.3390/fermentation10120605.
  33. Aditiawati P, Dungani R, Muharam S, Sulaeman A, Hartati S, Dewi M, et al. The Nanocellulose Fibers from Symbiotic Culture of Bacteria and Yeast (SCOBY) Kombucha: Preparation and Characterization. Nanofibers - Synthesis, Properties and Applications 2021:1–13. https://doi.org/10.5772/intechopen.96310.
  34. Fernandes I de AA, Pedro AC, Ribeiro VR, Bortolini DG, Ozaki MSC, Maciel GM, et al. Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol 2020;164:2598–611. https://doi.org/10.1016/j.ijbiomac.2020.07.255.
  35. Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al. Bacterial cellulose: Production, characterization and application as antimicrobial agent. Int J Mol Sci 2021;22:1–19. https://doi.org/10.3390/ijms222312984.
  36. Feng X, Ge Z, Wang Y, Xia X, Zhao B, Dong M. Production and characterization of bacterial cellulose from kombucha-fermented soy whey. Food Production, Processing and Nutrition 2024;6. https://doi.org/10.1186/s43014-023-00188-3.
  37. Singhania RR, Patel AK, Tseng YS, Kumar V, Chen CW, Haldar D, et al. Developments in bioprocess for bacterial cellulose production. Bioresour Technol 2022;344:126343. https://doi.org/10.1016/j.biortech.2021.126343.
  38. Villarreal-soto SA, Bouajila J, Pace M, Leech J, Cotter PD, Souchard J, et al. International Journal of Food Microbiology Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int J Food Microbiol 2020;333:108778. https://doi.org/10.1016/j.ijfoodmicro.2020.108778.
  39. Wang SS, Han YH, Chen JL, Zhang DC, Shi XX, Ye YX, et al. Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers (Basel) 2018;10. https://doi.org/10.3390/polym10090963.
  40. Aditiawati P, Taufik I, Alexis JJG, Dungani R. Bacterial Nanocellulose from Symbiotic Culture of Bacteria and Yeast Kombucha Prepared with Lemongrass Tea and Sucrose: Optimization and Characterization. Bioresources 2023;18:3178–97. https://doi.org/10.15376/biores.18.2.3178-3197.
  41. El-Naggar NEA, Mohammed ABA, El-Malkey SE. Bacterial nanocellulose production using Cantaloupe juice, statistical optimization and characterization. Sci Rep 2023;13:1–25. https://doi.org/10.1038/s41598-022-26642-9.
  42. Bayu A, Nandiyanto D, Oktiani R, Ragadhita R. Indonesian Journal of Science & Technology How to Read and Interpret FTIR Spectroscope of Organic Material 2019:97–118.
  43. Khiabani A, Sarabi-Jamab M, Shakeri MS, Pahlevanlo A, Emadzadeh B. Exploring the Acetobacteraceae family isolated from kombucha SCOBYs worldwide and comparing yield and characteristics of biocellulose under various fermentation conditions. Sci Rep 2024;14:26616. https://doi.org/10.1038/s41598-024-77305-w.
  44. Atykyan N, Revin V, Shutova V. Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express 2020;10. https://doi.org/10.1186/s13568-020-01020-8.
  45. Popa-Tudor I, Tritean N, Dima Ștefan O, Trică B, Ghiurea M, Cimpean A, et al. Kombucha Versus Vegetal Cellulose for Affordable Mucoadhesive (nano)Formulations. Gels 2025;11. https://doi.org/10.3390/gels11010037.
  46. Charoenrak S, Charumanee S, Sirisa-ard P, Bovonsombut S, Kumdhitiahutsawakul L, Kiatkarun S, et al. Nanobacterial Cellulose from Kombucha Fermentation as a Potential Protective Carrier of Lactobacillus plantarum under Simulated Gastrointestinal Tract Conditions. Polymers 2023;15. https://doi.org/10.3390/polym15061356.
  47. Liu D, Labas A, Long B, McKnight S, Xu C, Tian J, et al. Bacterial nanocellulose production using cost-effective, environmentally friendly, acid whey based approach. Bioresource Technology Reports 2023;24:101629. https://doi.org/10.1016/j.biteb.2023.101629.