A Review: Peptide-Based Hydrogels Biomaterials: From Synthesis to Biomedical Applications

##plugins.themes.academic_pro.article.main##

Nasmi Herlina Sari
Muhammad Zaidan Fadhlurrohman Rivlan
Senthil Muthu Kumar Thiagamani

Abstract

Peptide-based hydrogel biomaterials (BHP) have emerged as novel therapeutic platforms for biomedical applications, providing accurate, efficient, and regulated drug delivery. This review examines the design, characterization, production, and biomedical applications of BHP, emphasizing their potential benefits in biomedicine. Advances in peptide synthesis techniques have permitted the creation of hydrogels with customized physicochemical properties to satisfy specific biomedical needs. Furthermore, this review delves into BHPs' biomedical uses, focusing on their role in improving therapeutic responses, allowing for sustained drug release, and reducing tumor growth. BHPs, with their biocompatibility, programmable hydrogel production, and adaptability, constitute a viable technique for addressing the problems of ovarian cancer treatment. This paper gives a thorough summary of current achievements in BHP research, bridging the gap between material development and clinical applications.

##plugins.themes.academic_pro.article.details##

Author Biographies

Nasmi Herlina Sari, University of Mataram

Department of Mechanical Engineering, Faculty of Engineering

Muhammad Zaidan Fadhlurrohman Rivlan, University of Mataram

Faculty of Medical

Senthil Muthu Kumar Thiagamani, Kalasalingam Academy of Research and Education

Department of Mechanical Engineering

How to Cite
Sari, N. H., Rivlan, M. Z. F., & Thiagamani, S. M. K. (2025). A Review: Peptide-Based Hydrogels Biomaterials: From Synthesis to Biomedical Applications. Journal of Fibers and Polymer Composites, 4(1), 11–32. https://doi.org/10.55043/jfpc.v4i1.241

References

  1. Guan Q. Natural resources and human resources. Economic Development in Modern China Before 1949, London: Routledge; 2023, p. 173–91. https://doi.org/10.4324/9781003410386-11.
  2. Shahdeo D, Roberts A, Kesarwani V, Horvat M, Chouhan RS, Gandhi S. Polymeric biocompatible iron oxide nanoparticles labeled with peptides for imaging in ovarian cancer. Biosci Rep 2022;42:1–14. https://doi.org/10.1042/BSR20212622.
  3. Murgan SS, Abd Elaziz FJ, Nasr AMA, Elfaki MEE, Khalil EAG. Ovarian Cancer: Tumor-Specific Urinary Micro-Peptides Profiling as Potential Biomarkers for Early Diagnosis. Proteomes 2020;8:32. https://doi.org/10.3390/proteomes8040032.
  4. He GZ, Lin WJ. Peptide-Functionalized Nanoparticles-Encapsulated Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells. Nanomaterials 2021;11:772. https://doi.org/10.3390/nano11030772.
  5. Yao H, Xu Z, Li C, Tse M-K, Tong Z, Zhu G. Synthesis and Cytotoxic Study of a Platinum(IV) Anticancer Prodrug with Selectivity toward Luteinizing Hormone-Releasing Hormone (LHRH) Receptor-Positive Cancer Cells. Inorg Chem 2019;58:11076–84. https://doi.org/10.1021/acs.inorgchem.9b01583.
  6. Kong X, Xu J, Yang X, Zhai Y, Ji J, Zhai G. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. J Drug Target 2022;30:46–60. https://doi.org/10.1080/1061186X.2021.1920026.
  7. Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci 2019;7:461–71. https://doi.org/10.1039/C8BM01340C.
  8. Fu D, Liu D, Zhang L, Sun L. Self-assembled fluorescent tripeptide nanoparticles for bioimaging and drug delivery applications. Chinese Chemical Letters 2020;31:3195–9. https://doi.org/10.1016/j.cclet.2020.07.011.
  9. Sopo M, Anttila M, Muukkonen O-T, YlÄ-Herttuala S, Kosma V-M, Keski-Nisula L, et al. Microvessels in Epithelial Ovarian Tumors: High Microvessel Density Is a Significant Feature of Malignant Ovarian Tumors. Anticancer Res 2020;40:6923–31. https://doi.org/10.21873/anticanres.14716.
  10. Wang Z, Zhao S, Gu W, Dong Y, Meng F, Yuan J, et al. α3 integrin-binding peptide-functionalized polymersomes loaded with volasertib for dually-targeted molecular therapy for ovarian cancer. Acta Biomater 2021;124:348–57. https://doi.org/10.1016/j.actbio.2021.02.007.
  11. Liu S, Zhao M, Zhou Y, Li L, Wang C, Yuan Y, et al. A self-assembling peptide hydrogel-based drug co-delivery platform to improve tissue repair after ischemia-reperfusion injury. Acta Biomater 2020;103:102–14. https://doi.org/10.1016/j.actbio.2019.12.011.
  12. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011;12:1387–408. https://doi.org/10.1021/bm200083n.
  13. Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020;57:678–96. https://doi.org/10.3892/ijo.2020.5099.
  14. Serhan M, Sprowls M, Jackemeyer D, Long M, Perez ID, Maret W, et al. Total iron measurement in human serum with a smartphone. AIChE Annual Meeting, Orlando: American Institute of Chemical Engineers; 2019.
  15. Chronopoulou L, Margheritelli S, Toumia Y, Paradossi G, Bordi F, Sennato S, et al. Biosynthesis and Characterization of Cross-Linked Fmoc Peptide-Based Hydrogels for Drug Delivery Applications. Gels 2015;1:179–93. https://doi.org/10.3390/gels1020179.
  16. Dafni U, Martín-Lluesma S, Balint K, Tsourti Z, Vervita K, Chenal J, et al. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: A 20-year systematic review and meta-analysis. Eur J Cancer 2021;142:63–82. https://doi.org/10.1016/j.ejca.2020.10.014.
  17. Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020;16:1404–54. https://doi.org/10.1039/C9SM02127B.
  18. Shim J, Kang J, Yun S Il. Chitosan–dipeptide hydrogels as potential anticancer drug delivery systems. Int J Biol Macromol 2021;187:399–408. https://doi.org/10.1016/j.ijbiomac.2021.07.134.
  19. Chronopoulou L, Di Nitto A, Papi M, Parolini O, Falconi M, Teti G, et al. Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids Surf B Biointerfaces 2021;207:111989. https://doi.org/10.1016/j.colsurfb.2021.111989.
  20. Gharios R, Francis RM, DeForest CA. Chemical and biological engineering strategies to make and modify next-generation hydrogel biomaterials. Matter 2023;6:4195–244. https://doi.org/10.1016/j.matt.2023.10.012.
  21. Rughani R V, Branco MC, Pochan DJ, Schneider JP. De Novo Design of a Shear-Thin Recoverable Peptide-Based Hydrogel Capable of Intrafibrillar Photopolymerization. Macromolecules 2010;43:7924–30. https://doi.org/10.1021/ma1014808.
  22. Li L, Qiu C, Hou M, Wang X, Huang C, Zou J, et al. Ferroptosis in Ovarian Cancer: A Novel Therapeutic Strategy. Front Oncol 2021;11. https://doi.org/10.3389/fonc.2021.665945.
  23. Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. Journal of Controlled Release 2021;329:624–44. https://doi.org/10.1016/j.jconrel.2020.09.055.
  24. Li Y, Wang F, Cui H. Peptide‐based supramolecular hydrogels for delivery of biologics. Bioeng Transl Med 2016;1:306–22. https://doi.org/10.1002/btm2.10041.
  25. Tavakoli J, Tang Y. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers (Basel) 2017;9:364. https://doi.org/10.3390/polym9080364.
  26. Yadav N, Chauhan MK, Chauhan VS. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater Sci 2020;8:84–100. https://doi.org/10.1039/C9BM01304K.
  27. Gavel PK, Dev D, Parmar HS, Bhasin S, Das AK. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl Mater Interfaces 2018;10:10729–40. https://doi.org/10.1021/acsami.8b00501.
  28. Wang S, Wu W, Liu Y, Wang C, Xu Q, Lv Q, et al. Targeted peptide-modified oxidized mesoporous carbon nanospheres for chemo-thermo combined therapy of ovarian cancer in vitro. Drug Deliv 2022;29:1951–8. https://doi.org/10.1080/10717544.2022.2089298.
  29. Pan Q, Tian J, Zhu H, Hong L, Mao Z, Oliveira JM, et al. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater Sci Eng 2020;6:2175–85. https://doi.org/10.1021/acsbiomaterials.0c00163.
  30. Chen G, Kang W, Li W, Chen S, Gao Y. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics 2022;12:1419–39. https://doi.org/10.7150/thno.61747.
  31. Li S, Wang R, Li J, Liu Y, Fu Y, Zhou J, et al. Revealing the Dynamic Mechanism by Which Transferrin Promotes the Cellular Uptake of HAIYPRH Peptide-Conjugated Nanostructures by Force Tracing. Mol Pharm 2021;18:1480–5. https://doi.org/10.1021/acs.molpharmaceut.0c01119.
  32. Ross A, Sauce-Guevara MA, Alarcon EI, Mendez-Rojas MA. Peptide Biomaterials for Tissue Regeneration. Front Bioeng Biotechnol 2022;10. https://doi.org/10.3389/fbioe.2022.893936.
  33. Moore KN, Vergote I, Oaknin A, Colombo N, Banerjee S, Oza A, et al. FORWARD I: A Phase III Study of Mirvetuximab Soravtansine Versus Chemotherapy in Platinum-Resistant Ovarian Cancer. Future Oncology 2018;14:1669–78. https://doi.org/10.2217/fon-2017-0646.
  34. Wang S-H, Yu J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 2018;156:1–15. https://doi.org/10.1016/j.biomaterials.2017.11.024.
  35. Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, et al. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. Journal of Controlled Release 1998;53:105–17. https://doi.org/10.1016/S0168-3659(97)00243-5.
  36. Kumar D, Moghiseh M, Chitcholtan K, Mutreja I, Lowe C, Kaushik A, et al. Correction: LHRH conjugated gold nanoparticles assisted efficient ovarian cancer targeting evaluated via spectral photon-counting CT imaging: a proof-of-concept research. J Mater Chem B 2023;11:4820–4820. https://doi.org/10.1039/D3TB90088F.
  37. Vincent MP, Karabin NB, Allen SD, Bobbala S, Frey MA, Yi S, et al. The Combination of Morphology and Surface Chemistry Defines the Immunological Identity of Nanocarriers in Human Blood. Adv Ther (Weinh) 2021;4. https://doi.org/10.1002/adtp.202100062.
  38. Gan Z, Xu H. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications. Macromol Rapid Commun 2017;38. https://doi.org/10.1002/marc.201700370.
  39. Al Musaimi O, Ng KW, Gavva V, Mercado-Valenzo OM, Haroon HB, Williams DR. Elastin-Derived Peptide-Based Hydrogels as a Potential Drug Delivery System. Gels 2024;10:531. https://doi.org/10.3390/gels10080531.
  40. Neves MI, Wechsler ME, Gomes ME, Reis RL, Granja PL, Peppas NA. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications. Tissue Eng Part B Rev 2017;23:27–43. https://doi.org/10.1089/ten.teb.2016.0202.
  41. Li R, Horgan CC, Long B, Rodriguez AL, Mather L, Barrow CJ, et al. Tuning the mechanical and morphological properties of self-assembled peptide hydrogels via control over the gelation mechanism through regulation of ionic strength and the rate of pH change. RSC Adv 2015;5:301–7. https://doi.org/10.1039/C4RA13266A.
  42. Indriyani N, Atnawati R, Ardhani DH. Sintesa dan PemanfataanHidrogel. J Inov Tek Kim 2023;8:245–54.
  43. Bairagi D, Biswas P, Basu K, Hazra S, Hermida-Merino D, Sinha DK, et al. Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS Appl Bio Mater 2019;2:5235–44. https://doi.org/10.1021/acsabm.9b00424.
  44. Yazdi MK, Zarrintaj P, Ghavami M, Alizadeh R, Saeb MR. Protein and peptide-based delivery systems. Nanoengineered Biomaterials for Advanced Drug Delivery, Elsevier; 2020, p. 145–61. https://doi.org/10.1016/B978-0-08-102985-5.00007-3.
  45. Seow WY, Hauser CAE. Tunable Mechanical Properties of Ultrasmall Peptide Hydrogels by Crosslinking and Functionalization to Achieve the 3D Distribution of Cells. Adv Healthc Mater 2013;2:1219–23. https://doi.org/10.1002/adhm.201200463.
  46. Yu T, Greish K, McGill LD, Ray A, Ghandehari H. Influence of Geometry, Porosity, and Surface Characteristics of Silica Nanoparticles on Acute Toxicity: Their Vasculature Effect and Tolerance Threshold. ACS Nano 2012;6:2289–301. https://doi.org/10.1021/nn2043803.
  47. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8:15–23. https://doi.org/10.1038/nmat2344.
  48. Luo G-F, Chen W-H, Zeng X, Zhang X-Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021;50:945–85. https://doi.org/10.1039/D0CS00152J.
  49. Deng L, Xu Y, Sun C, Yun B, Sun Q, Zhao C, et al. Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Sci Bull (Beijing) 2018;63:917–24. https://doi.org/10.1016/j.scib.2018.05.022.
  50. Binaymotlagh R, Del Giudice A, Mignardi S, Amato F, Marrani AG, Sivori F, et al. Green In Situ Synthesis of Silver Nanoparticles-Peptide Hydrogel Composites: Investigation of Their Antibacterial Activities. Gels 2022;8:700. https://doi.org/10.3390/gels8110700.
  51. Lian M, Chen X, Lu Y, Yang W. Self-Assembled Peptide Hydrogel as a Smart Biointerface for Enzyme-Based Electrochemical Biosensing and Cell Monitoring. ACS Appl Mater Interfaces 2016;8:25036–42. https://doi.org/10.1021/acsami.6b05409.
  52. Yoshii T, Onogi S, Shigemitsu H, Hamachi I. Chemically Reactive Supramolecular Hydrogel Coupled with a Signal Amplification System for Enhanced Analyte Sensitivity. J Am Chem Soc 2015;137:3360–5. https://doi.org/10.1021/ja5131534.
  53. Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 2014;43:7132–70. https://doi.org/10.1039/C4CS00086B.
  54. Jin X, Zhou J, Zhang Z, Lv H. Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment. Int J Pharm 2019;571:118751. https://doi.org/10.1016/j.ijpharm.2019.118751.
  55. Liu J, Zhao X. Design of Self-Assembling Peptides and Their Biomedical Applications. Nanomedicine 2011;6:1621–43. https://doi.org/10.2217/nnm.11.142.
  56. Fuertes A, Amorín M, Granja JR. Versatile symport transporters based on cyclic peptide dimers. Chemical Communications 2020;56:46–9. https://doi.org/10.1039/C9CC06644F.
  57. Li C, Chen X, Zhang F, He X, Fang G, Liu J, et al. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing. Anal Chem 2017;89:10431–8. https://doi.org/10.1021/acs.analchem.7b02430.
  58. Caliskan OS, Sardan Ekiz M, Tekinay AB, Guler MO. Spatial Organization of Functional Groups on Bioactive Supramolecular Glycopeptide Nanofibers for Differentiation of Mesenchymal Stem Cells (MSCs) to Brown Adipogenesis. Bioconjug Chem 2017;28:740–50. https://doi.org/10.1021/acs.bioconjchem.6b00632.
  59. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J Tissue Eng Regen Med 2017;11:1532–41. https://doi.org/10.1002/term.2053.
  60. Xu X, Li Y, Li H, Liu R, Sheng M, He B, et al. Smart Nanovehicles Based on pH‐Triggered Disassembly of Supramolecular Peptide‐Amphiphiles for Efficient Intracellular Drug Delivery. Small 2014;10:1133–40. https://doi.org/10.1002/smll.201301885.
  61. Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, et al. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023;15:1160. https://doi.org/10.3390/polym15051160.
  62. Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 2011;63:1257–66. https://doi.org/10.1016/j.addr.2011.06.009.
  63. Kumar P, Pillay V, Modi G, Choonara YE, du Toit LC, Naidoo D. Self-Assembling Peptides: Implications for Patenting in Drug Delivery and Tissue Engineering. Recent Pat Drug Deliv Formul 2011;5:24–51. https://doi.org/10.2174/187221111794109510.
  64. Gomes V, Veloso SRS, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022;24:186. https://doi.org/10.3390/ijms24010186.
  65. Chu C-W, Ravoo BJ. Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host–guest interaction. Chemical Communications 2017;53:12450–3. https://doi.org/10.1039/C7CC07859E.
  66. Zhao R, Li T, Zheng G, Jiang K, Fan L, Shao J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials 2017;143:1–16. https://doi.org/10.1016/j.biomaterials.2017.07.030.
  67. Kang GJ, Ewing-Nelson SR, Mackey L, Schlitt JT, Marathe A, Abbas KM, et al. Semantic network analysis of vaccine sentiment in online social media. Physiol Behav 2018;176:139–48. https://doi.org/10.1016/j.vaccine.2017.05.052.
  68. Veneziani AC, Gonzalez-Ochoa E, Oza AM. Emerging peptide therapeutics for the treatment of ovarian cancer. Expert Opin Emerg Drugs 2023;28:129–44. https://doi.org/10.1080/14728214.2023.2218643.
  69. Peng F, Chen Y, Liu J, Xing Z, Fan J, Zhang W, et al. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J Colloid Interface Sci 2021;591:314–25. https://doi.org/10.1016/j.jcis.2021.02.019.
  70. Qiu F, Tang C, Chen Y. Amyloid‐like aggregation of designer bolaamphiphilic peptides: Effect of hydrophobic section and hydrophilic heads. Journal of Peptide Science 2018;24. https://doi.org/10.1002/psc.3062.
  71. Jammalamadaka U, Tappa K. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J Funct Biomater 2018;9:22. https://doi.org/10.3390/jfb9010022.
  72. Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H. Genetic synthesis and characterization of pH‐ and temperature‐sensitive silk‐elastinlike protein block copolymers. J Biomed Mater Res 2002;62:195–203. https://doi.org/10.1002/jbm.10272.
  73. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 2009;103:655–63. https://doi.org/10.1002/bit.22361.
  74. Lim JYC, Lin Q, Xue K, Loh XJ. Recent advances in supramolecular hydrogels for biomedical applications. Mater Today Adv 2019;3:100021. https://doi.org/10.1016/j.mtadv.2019.100021.
  75. Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomater 2014;10:1671–82. https://doi.org/10.1016/j.actbio.2013.08.013.
  76. Squire LR. 基因的改变NIH Public Access. Neuron 2009;61:1–7.
  77. Price R, Gustafson J, Greish K, Cappello J, McGill L, Ghandehari H. Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery. Int J Pharm 2012;427:97–104. https://doi.org/10.1016/j.ijpharm.2011.09.037.
  78. Huang R, Qi W, Feng L, Su R, He Z. Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter 2011;7:6222. https://doi.org/10.1039/c1sm05375b.
  79. Machado R, da Costa A, Sencadas V, Garcia-Arévalo C, Costa CM, Padrão J, et al. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials 2013;8:065009. https://doi.org/10.1088/1748-6041/8/6/065009.
  80. Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, et al. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024;40:503–23. https://doi.org/10.1016/j.bioactmat.2024.06.013.
  81. Gharios R, Francis RM, DeForest CA. Chemical and biological engineering strategies to make and modify next-generation hydrogel biomaterials. Matter 2023;6:4195–244. https://doi.org/10.1016/j.matt.2023.10.012.
  82. Nizam AAK, Masri S, Fadilah NIM, Maarof M, Fauzi MB. Current Insight of Peptide-Based Hydrogels for Chronic Wound Healing Applications: A Concise Review. Pharmaceuticals 2025;18:58. https://doi.org/10.3390/ph18010058.
  83. Liu C, Zhang Q, Zhu S, Liu H, Chen J. Preparation and applications of peptide-based injectable hydrogels. RSC Adv 2019;9:28299–311. https://doi.org/10.1039/C9RA05934B.
  84. Mukherjee N, Adak A, Ghosh S. Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. Soft Matter 2020;16:10046–64. https://doi.org/10.1039/D0SM00885K.
  85. Hao Z-W, Zhang Z-Y, Wang Z-P, Wang Y, Chen J-Y, Chen T-H, et al. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024;11:75. https://doi.org/10.1186/s40779-024-00576-x.
  86. Matsuoka AJ, Sayed ZA, Stephanopoulos N, Berns EJ, Wadhwani AR, Morrissey ZD, et al. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles. PLoS One 2017;12:e0190150. https://doi.org/10.1371/journal.pone.0190150.
  87. Stephanopoulos N, Ortony JH, Stupp SI. Self-assembly for the synthesis of functional biomaterials. Acta Mater 2013;61:912–30. https://doi.org/10.1016/j.actamat.2012.10.046.
  88. Adak A, Das G, Khan J, Mukherjee N, Gupta V, Mallesh R, et al. Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomater Sci Eng 2020;6:2287–96. https://doi.org/10.1021/acsbiomaterials.9b01829.
  89. Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018;99:117–33. https://doi.org/10.1016/j.eurpolymj.2017.12.004.